ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetically-Functionalized Self-Aligning Graphene Fillers for High-Efficiency Thermal Management Applications

84   0   0.0 ( 0 )
 نشر من قبل Alexander Balandin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on heat conduction properties of thermal interface materials with self-aligning magnetic grapheme fillers. Graphene enhanced nano-composites were synthesized by an inexpensive and scalable technique based on liquid-phase exfoliation. Functionalization of graphene and few-layer-graphene flakes with Fe3O4 nanoparticles allowed us to align the fillers in an external magnetic field during dispersion of the thermal paste to the connecting surfaces. The filler alignment results in a strong increase of the apparent thermal conductivity and thermal diffusivity through the layer of nano-composite inserted between two metallic surfaces. The self-aligning magnetic grapheme fillers improve heat conduction in composites with both curing and non-curing matrix materials. The thermal conductivity enhancement with the oriented fillers is a factor of two larger than that with the random fillers even at the low ~1 wt. % of graphene loading. The real-life testing with computer chips demonstrated the temperature rise decrease by as much as 10oC with use of the non-curing thermal interface material with ~1 wt. % of the oriented fillers. Our proof-of-concept experiments suggest that the thermal interface materials with functionalized graphene and few-layer-graphene fillers, which can be oriented during the composite application to the surfaces, can lead to a new method of thermal management of advanced electronics.



قيم البحث

اقرأ أيضاً

We investigated thermal properties of the epoxy-based composites with a high loading fraction - up to f=45 vol.% - of the randomly oriented electrically conductive graphene fillers and electrically insulating boron nitride fillers. It was found that both types of the composites revealed a distinctive thermal percolation threshold at the loading fraction f>20 vol.%. The graphene loading required for achieving the thermal percolation was substantially higher than the loading for the electrical percolation. Graphene fillers outperformed boron nitride fillers in the thermal conductivity enhancement. It was established that thermal transport in composites with the high filler loading, above the thermal percolation threshold, is dominated by heat conduction via the network of percolating fillers. Unexpectedly, we determined that the thermal transport properties of the high loading composites were influenced strongly by the cross-plane thermal conductivity of the quasi-two-dimensional fillers. The obtained results shed light on the debated mechanism of the thermal percolation, and facilitate the development of the next generation of the efficient thermal interface materials for electronic applications.
We report the results of an experimental study of thermal and magnetic properties of nanostructured ferrimagnetic iron oxide composites with graphene and graphite fillers synthesized via the current activated pressure assisted densification. The ther mal conductivity was measured using the laser-flash and transient plane source techniques. It was demonstrated that addition of 5 wt. % of equal mixture of graphene and graphite flakes to the composite results in a factor of x2.6 enhancement of the thermal conductivity without significant degradation of the saturation magnetization. The microscopy and spectroscopic characterization reveal that sp2 carbon fillers preserve their crystal structure and morphology during the composite processing. The strong increase in the thermal conductivity was attributed to the excellent phonon heat conduction properties of graphene and graphite. The results are important for energy and electronic applications of the nanostructured permanent magnets.
The graphene-enhanced Raman scattering of Rhodamine 6G molecules on pristine, fluorinated and 4-nitrophenyl functionalized graphene substrates was studied. The uniformity of the Raman signal enhancement was studied by making large Raman maps. The rel ative enhancement of the Raman signal is demonstrated to be dependent on the functional groups, which was rationalized by the different doping levels of pristine, fluorinated and 4-nitrophenyl functionalized graphene substrates. The impact of the Fermi energy of graphene and the phonon energy of the molecules was considered together for the first time in order to explain the enhancement. Such approach enables to understand the enhancement without assuming anything about the uniformity of the molecules on the graphene surface. The agreement between the theory and our measured data was further demonstrated by varying excitation energy.
Graphene was recently proposed as a material for heat removal owing to its extremely high thermal conductivity. We simulated heat propagation in silicon-on-insulator circuits with and without graphene lateral heat spreaders. Numerical solutions of th e heat propagation equations were obtained using the finite element method. The analysis was focused on the prototype silicon-on-insulator circuits with the metal-oxide-semiconductor field-effect transistors. It was found that the incorporation of graphene or few-layer graphene layers with proper heat sinks can substantially lower the temperature of the localized hot spots. The maximum temperature in the transistor channels was studied as function of graphenes thermal conductivity and the thickness of the few-layer-graphene. The developed model and obtained results are important for the design of graphene heat spreaders and interconnects.
143 - M. N. Nair , M. Cranney , F. Vonau 2012
Gold intercalation between the buffer layer and a graphene monolayer of epitaxial graphene on SiC(0001) leads to the formation of quasi free standing small aggregates of clusters. Angle Resolved Photoemission Spectroscopy measurements reveal that the se clusters preserve the linear dispersion of the graphene quasiparticles and surprisingly increase their Fermi velocity. They also strongly modify the band structure of graphene around the Van Hove singularities (VHs) by a strong extension without charge transfer. This result gives a new insight on the role of the intercalant in the renormalization of the bare electronic band structure of graphene usually observed in Graphite and Graphene Intercalation Compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا