ترغب بنشر مسار تعليمي؟ اضغط هنا

Localization and spin transport in honeycomb structures with spin-orbit coupling

135   0   0.0 ( 0 )
 نشر من قبل Sergio L. A. de Queiroz
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transfer-matrix methods are used for a tight-binding description of electron transport in graphene-like geometries, in the presence of spin-orbit couplings. Application of finite-size scaling and phenomenological renormalization techniques shows that, for strong enough spin-orbit interactions and increasing on-site disorder, this system undergoes a metal-insulator transition characterized by the exponents $ u=2.71(8)$, $eta=0.174(2)$. We show how one can extract information regarding spin polarization decay with distance from an injection edge, from the evolution of wave-function amplitudes in the transfer-matrix approach. For (relatively weak) spin-orbit coupling intensity $mu$, we obtain that the characteristic length $Lambda_s$ for spin-polarization decay behaves as $Lambda_s propto mu^{-2}$.

قيم البحث

اقرأ أيضاً

Spin-dependent partial conductances are evaluated in a tight-binding description of electron transport in the presence of spin-orbit (SO) couplings, using transfer-matrix methods. As the magnitude of SO interactions increases, the separation of spin- switching channels from non-spin-switching ones is gradually erased. Spin-polarised incident beams are produced by including a Zeeman-like term in the Hamiltonian. The exiting polarisation is shown to exhibit a maximum as a function of the intensity of SO couplings. For moderate site disorder, and both weak and strong SO interactions, no evidence is found for a decay of exiting polarisation against increasing system length. With very low site disorder and weak SO couplings a spin-filter effect takes place, as polarisation {em increases} with increasing system length.
We present a simplified description for spin-dependent electronic transport in honeycomb-lattice structures with spin-orbit interactions, using generalizations of the stochastic non-equilibrium model known as the totally asymmetric simple exclusion p rocess. Mean field theory and numerical simulations are used to study currents, density profiles and current polarization in quasi- one dimensional systems with open boundaries, and externally-imposed particle injection ($alpha$) and ejection ($beta$) rates. We investigate the influence of allowing for double site occupancy, according to Paulis exclusion principle, on the behavior of the quantities of interest. We find that double occupancy shows strong signatures for specific combinations of rates, namely high $alpha$ and low $beta$, but otherwise its effects are quantitatively suppressed. Comments are made on the possible relevance of the present results to experiments on suitably doped graphenelike structures.
The discovery of an ever increasing family of atomic layered magnetic materials, together with the already established vast catalogue of strong spin-orbit coupling (SOC) and topological systems, calls for some guiding principles to tailor and optimiz e novel spin transport and optical properties at their interfaces. Here we focus on the latest developments in both fields that have brought them closer together and make them ripe for future fruitful synergy. After outlining fundamentals on van der Waals (vdW) magnetism and SOC effects, we discuss how their coexistence, manipulation and competition could ultimately establish new ways to engineer robust spin textures and drive the generation and dynamics of spin current and magnetization switching in 2D materials-based vdW heterostructures. Grounding our analysis on existing experimental results and theoretical considerations, we draw a prospective analysis about how intertwined magnetism and spin-orbit torque (SOT) phenomena combine at interfaces with well-defined symmetries, and how this dictates the nature and figures-of-merit of SOT and angular momentum transfer. This will serve as a guiding role in designing future non-volatile memory devices that utilize the unique properties of 2D materials with the spin degree of freedom.
Recent experiments on switching antiferromagnetic domains by electric current pulses have attracted a lot of attention to spin-orbit torques in antiferromagnets. In this work, we employ the tight-binding model solver, kwant, to compute spin-orbit tor ques in a two-dimensional antiferromagnet on a honeycomb lattice with strong spin-orbit interaction of Rashba type. Our model combines spin-orbit interaction, local s-d-like exchange, and scattering of conduction electrons on on-site disorder potential to provide a microscopic mechanism for angular momentum relaxation. We consider t
We consider the Higgs mode at nonzero momentum in superconductors and demonstrate that in the presence of Rashba spin-orbit coupling, it couples linearly with an external exchange field. The Higgs-spin coupling dramatically modifies the spin suscepti bility near the superconducting critical temperature and consequently enhances the spin pumping effect in a ferromagnetic insulator/superconductor bilayer system. We show that this effect can be detected by measuring the magnon-induced voltage generated by the inverse spin Hall effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا