ﻻ يوجد ملخص باللغة العربية
We demonstrate how to realize within supergravity a novel chaotic-type inflationary scenario driven by the radial parts of a conjugate pair of Higgs superfields causing the spontaneous breaking of a grand unified gauge symmetry at a scale assuming the value of the supersymmetric grand unification scale. The superpotential is uniquely determined at the renormalizable level by the gauge symmetry and a continuous R symmetry. We select two types of Kahler potentials, which respect these symmetries as well as an approximate shift symmetry. In particular, they include in a logarithm a dominant shift-symmetric term proportional to a parameter c- together with a small term violating this symmetry and characterized by a parameter c+. In both cases, imposing a lower bound on c-, inflation can be attained with subplanckian values of the original inflaton, while the corresponding effective theory respects perturbative unitarity for r+-=c+/c-<1. These inflationary models do not lead to overproduction of cosmic defects, are largely independent of the one-loop radiative corrections and accommodate, for natural values of r+-, observable gravitational waves consistently with all the current observational data. The inflaton mass is mostly confined in the range (3.7-8.1)x10^10 GeV.
We show that the recently proposed multi-natural inflation can be realized within the framework of 4D ${cal N}=1$ supergravity. The inflaton potential mainly consists of two sinusoidal potentials that are comparable in size, but have different period
We revisit the recently proposed multi-natural inflation and its realization in supergravity in light of the BICEP2 results. Multi-natural inflation is a single-field inflation model where the inflaton potential consists of multiple sinusoidal functi
We consider the electroweak phase transition in the conformal extension of the standard model known as SU(2)cSM. Apart from the standard model particles, this model contains an additional scalar and gauge field that are both charged under the hidden
We study the cosmology of a recent model of supersymmetry breaking, in the presence of a tuneable positive cosmological constant, based on a gauged shift symmetry of a string modulus that can be identified with the string dilaton. The minimal spectru
A double hybrid inflationary scenario in non-minimal supergravity which can predict values of the tensor-to-scalar ratio up to about 0.05 is presented. Larger values of this ratio would require unacceptably large running of the scalar spectral index.