ترغب بنشر مسار تعليمي؟ اضغط هنا

Traveling cluster pairs in a system of phase oscillators with positive and negative couplings under a periodic driving field

195   0   0.0 ( 0 )
 نشر من قبل Byung-Gook Yoon
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate numerically the clustering behavior of a system of phase oscillators with positive and negative couplings under a periodic external driving field with a bimodal distribution of driving phases. The phase distribution and the mean speed of the traveling state, as well as the order parameter for synchronization, are computed as the driving amplitude is varied. We observe that the periodically-driven system can also host traveling states for parameters in the same range as those for the case of a system without a driving field. The traveling speed is found to depend non-monotonically on the driving amplitude. In particular, oscillators divide into four clusters and move in pairs. Further, depending on the driving amplitude, two kinds of traveling mode arise: pairs of clusters traveling in the same direction (symmetric mode) and in opposite directions (antisymmetric mode). In the latter case (antisymmetric traveling mode), the average phase speed of the whole system apparently vanishes. A phenomenological argument for such behavior is given.



قيم البحث

اقرأ أيضاً

166 - J. Choi , M.Y. Choi , B.-G. Yoon 2014
We investigate numerically the dynamics of traveling clusters in systems of phase oscillators, some of which possess positive couplings and others negative couplings. The phase distribution, speed of traveling, and average separation between clusters as well as order parameters for positive and negative oscillators are computed, as the ratio of the two coupling constants and/or the fraction of positive oscillators are varied. The traveling speed depending on these parameters is obtained and observed to fit well with the numerical data of the systems. With the help of this, we describe the conditions for the traveling state to appear in the systems with or without periodic driving.
We study the effects of Janus oscillators in a system of phase oscillators in which the coupling constants take both positive and negative values. Janus oscillators may also form a cluster when the other ones are ordered and we calculate numerically the traveling speed of three clusters emerging in the system and average separations between them as well as the order parameters for three groups of oscillators, as the coupling constants and the fractions of positive and Janus oscillators are varied. An expression explaining the dependence of the traveling speed on these parameters is obtained and observed to fit well the numerical data. With the help of this, we describe how Janus oscillators affect the traveling of the clusters in the system.
In this work, we study the dynamical robustness in a system consisting of both active and inactive oscillators. We analytically show that the dynamical robustness of such system is determined by the cross link density between active and inactive subp opulations, which depends on the specific process of inactivation. It is the multi-valued dependence of the cross link density on the control parameter, i.e., the ratio of inactive oscillators in the system, that leads to the fluctuation of the critical points. We further investigate how different network topologies and inactivation strategies affect the fluctuation. Our results explain why the fluctuation is more obvious in heterogeneous networks than in homogeneous ones, and why the low-degree nodes are crucial in terms of dynamical robustness. The analytical results are supported by numerical verifications.
We study the Langevin dynamics of a two-dimensional discrete oscillator chain absorbed on a periodic substrate and subjected to an external localized point force. Going beyond the commonly used harmonic bead-spring model, we consider a nonlinear Mors e interaction between the next-nearest-neighbors. We focus interest on the activation of directed motion instigated by thermal fluctuations and the localized point force. In this context the local transition states are identified and the corresponding activation energies are calculated. As a novel feature it is found that the transport of the chain in point force direction is determined by stepwise escapes of a single unit or segments of the chain due to the existence of multiple locally stable attractors. The non-vanishing net current of the chain is quantitatively assessed by the value of the mobility of the center of mass. It turns out that the latter as a function of the ratio of the competing length scales of the system, that is the period of the substrate potential and the equilibrium distance between two chain units, shows a resonance behavior. More precisely there exist a set of optimal parameter values maximizing the mobility. Interestingly, the phenomenon of negative resistance is found, i.e. the mobility possesses a minimum at a finite value of the strength of the thermal fluctuations for a given overcritical external driving force.
137 - Roozbeh Daneshvar 2012
In this article we study the dynamics of coupled oscillators. We use mechanical metronomes that are placed over a rigid base. The base moves by a motor in a one-dimensional direction and the movements of the base follow some functions of the phases o f the metronomes (in other words, it is controlled to move according to a provided function). Because of the motor and the feedback, the phases of the metronomes affect the movements of the base while on the other hand, when the base moves, it affects the phases of the metronomes in return. For a simple function for the base movement (such as $y = gamma_{x} [r theta_1 + (1 - r) theta_2]$ in which $y$ is the velocity of the base, $gamma_{x}$ is a multiplier, $r$ is a proportion and $theta_1$ and $theta_2$ are phases of the metronomes), we show the effects on the dynamics of the oscillators. Then we study how this function changes in time when its parameters adapt by a feedback. By numerical simulations and experimental tests, we show that the dynamic of the set of oscillators and the base tends to evolve towards a certain region. This region is close to a transition in dynamics of the oscillators; where more frequencies start to appear in the frequency spectra of the phases of the metronomes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا