ﻻ يوجد ملخص باللغة العربية
Double-tearing modes (DTMs) have been proposed as a driver of `off-axis sawtooth crashes in reverse magnetic shear tokamak configurations. Recently differential rotation provided by equilibrium sheared flows has been shown capable of decoupling the two DTM resonant layers, slowing the growth the instability. In this work we instead supply this differential rotation using an electron diamagnetic drift, which emerges in the presence of an equilibrium pressure gradient and finite Larmor radius physics. Diamagnetic drifts have the additional benefit of stabilizing reconnection local to the two tearing layers. Conducting linear and nonlinear simulations with the extended MHD code MRC-3d, we consider an m=2, n=1 cylindrical double-tearing mode. We show that asymmetries between the resonant layers and the emergence of an ideal MHD instability cause the DTM evolution to be highly dependent on the location of the pressure gradient. By locating a strong drift near the outer, dominant resonant surface are we able to saturate the mode and preserve the annular current ring, suggesting that the appearance of DTM activity in advanced tokamaks depends strongly on the details of the plasma pressure profile.
The global ideal kink equation, for cylindrical geometry and zero beta, is simplified in the high poloidal mode number limit and used to determine the tearing stability parameter, $Delta^prime$. In the presence of a steep monotonic current gradient,
The nonlinear dynamo effect of tearing modes is derived with the resistive MHD equations. The dynamo effect is divided into two parts, parallel and perpendicular to the magnetic field. Firstly, the force-free plasma is considered. It is found that th
Kinetic treatments of drift-tearing modes that match an inner resonant layer solution to an external MHD region solution, characterised by $Delta^{prime}$, fail to properly match the ideal MHD boundary condition on the parallel electric field, $E_{pa
The saturation of the tearing mode instability is described within the standard framework of reduced magnetohydrodynamics (RMHD) in the case of an $r$-dependent or of a uniform resistivity profile. Using the technique of matched asymptotic expansions
The tearing mode instability is one important mechanism that may explain the triggering of fast magnetic reconnection in astrophysical plasmas such as the solar corona and the Earths magnetosphere. In this paper, the linear stability analysis of the