ﻻ يوجد ملخص باللغة العربية
Stimulated Raman adiabatic passage (STIRAP) offers significant advantages for coherent population transfer between un- or weakly-coupled states and has the potential of realizing efficient quantum gate, qubit entanglement, and quantum information transfer. Here we report on the realization of STIRAP in a superconducting phase qutrit - a ladder-type system in which the ground state population is coherently transferred to the second-excited state via the dark state subspace. The result agrees well with the numerical simulation of the master equation, which further demonstrates that with the state-of-the-art superconducting qutrits the transfer efficiency readily exceeds $99%$ while keeping the population in the first-excited state below $1%$. We show that population transfer via STIRAP is significantly more robust against variations of the experimental parameters compared to that via the conventional resonant $pi$ pulse method. Our work opens up a new venue for exploring STIRAP for quantum information processing using the superconducting artificial atoms.
Light-matter interaction, and the understanding of the fundamental physics behind, is the scenario of emerging quantum technologies. Solid state devices allow the exploration of new regimes where ultrastrong coupling (USC) strengths are comparable to
Rigidity of an ordered phase in condensed matter results in collective excitation modes spatially extending in macroscopic dimensions. Magnon is a quantum of an elementary excitation in the ordered spin system, such as ferromagnet. Being low dissipat
We consider the dynamics of a single electron in a chain of tunnel coupled quantum dots, exploring the formal analogies of this system with some of the laser-driven multilevel atomic or molecular systems studied by Bruce W. Shore and collaborators ov
Ten years ago, coherent oscillations between two quantum states of a superconducting circuit differing by the presence or absence of a single Cooper pair on a metallic island were observed for the first time. This result immediately stimulated the de
In this paper we propose a new protocol to achieve coherent population transfer between two states in a three-level atom by using two ac fields. It is based on the physics of Stimulated Raman Adiabatic Passage (STIRAP), but it is implemented with the