ﻻ يوجد ملخص باللغة العربية
An interrelation between a topological design of network and efficient algorithm on it is important for its applications to communication or transportation systems. In this paper, we propose a design principle for a reliable routing in a store-carry-forward manner based on autonomously moving message-ferries on a special structure of fractal-like network, which consists of a self-similar tiling of equilateral triangles. As a collective adaptive mechanism, the routing is realized by a relay of cyclic message-ferries corresponded to a concatenation of the triangle cycles and using some good properties of the network structure. It is recoverable for local accidents in the hierarchical network structure. Moreover, the design principle is theoretically supported with a calculation method for the optimal service rates of message-ferries derived from a tandem queue model for stochastic processes on a chain of edges in the network. These results obtained from a combination of complex network science and computer science will be useful for developing a resilient network system.
System noise can negatively impact the performance of HPC systems, and the interconnection network is one of the main factors contributing to this problem. To mitigate this effect, adaptive routing sends packets on non-minimal paths if they are less
As one of the most popular south-bound protocol of software-defined networking(SDN), OpenFlow decouples the network control from forwarding devices. It offers flexible and scalable functionality for networks. These advantages may cause performance is
Network Traffic Monitoring and Analysis (NTMA) represents a key component for network management, especially to guarantee the correct operation of large-scale networks such as the Internet. As the complexity of Internet services and the volume of tra
Ubiquitous sensing devices frequently disseminate their data between them. The use of a distributed event-based system that decouples publishers of subscribers arises as an ideal candidate to implement the dissemination process. In this paper, we pre
Suppose there is a message generated at a node $v$ in a network and $v$ decides to pass the message to one of the neighbors $u$, and $u$ next decides to pass the message to one of its own neighbors, and so on. How to relay the message as far as possi