ﻻ يوجد ملخص باللغة العربية
Differential geometry (DG) based solvation models are a new class of variational implicit solvent approaches that are able to avoid unphysical solvent-solute boundary definitions and associated geometric singularities, and dynamically couple polar and nonpolar interactions in a self-consistent framework. Our earlier study indicates that DG based nonpolar solvation model outperforms other methods in nonpolar solvation energy predictions. However, the DG based full solvation model has not shown its superiority in solvation analysis, due to its difficulty in parametrization, which must ensure the stability of the solution of strongly coupled nonlinear Laplace-Beltrami and Poisson-Boltzmann equations. In this work, we introduce new parameter learning algorithms based on perturbation and convex optimization theories to stabilize the numerical solution and thus achieve an optimal parametrization of the DG based solvation models. An interesting feature of the present DG based solvation model is that it provides accurate solvation free energy predictions for both polar and nonploar molecules in a unified formulation. Extensive numerical experiment demonstrates that the present DG based solvation model delivers some of the most accurate predictions of the solvation free energies for a large number of molecules.
This chapter reviews the differential geometry-based solvation and electrolyte transport for biomolecular solvation that have been developed over the past decade. A key component of these methods is the differential geometry of surfaces theory, as ap
Moving Morphable Component (MMC) based topology optimization approach is an explicit algorithm since the boundary of the entity explicitly described by its functions. Compared with other pixel or node point-based algorithms, it is optimized through t
Electrostatic forces play many important roles in molecular biology, but are hard to model due to the complicated interactions between biomolecules and the surrounding solvent, a fluid composed of water and dissolved ions. Continuum model have been s
Nonlocal operators of fractional type are a popular modeling choice for applications that do not adhere to classical diffusive behavior; however, one major challenge in nonlocal simulations is the selection of model parameters. In this work we propos
Developing accurate solvers for the Poisson Boltzmann (PB) model is the first step to make the PB model suitable for implicit solvent simulation. Reducing the grid size influence on the performance of the solver benefits to increasing the speed of so