ترغب بنشر مسار تعليمي؟ اضغط هنا

Hexagon OPE Resummation and Multi-Regge Kinematics

173   0   0.0 ( 0 )
 نشر من قبل Georgios Papathanasiou
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse the OPE contribution of gluon bound states in the double scaling limit of the hexagonal Wilson loop in planar N=4 super Yang-Mills theory. We provide a systematic procedure for perturbatively resumming the contributions from single-particle bound states of gluons and expressing the result order by order in terms of two-variable polylogarithms. We also analyse certain contributions from two-particle gluon bound states and find that, after analytic continuation to the $2to 4$ Mandelstam region and passing to multi-Regge kinematics (MRK), only the single-particle gluon bound states contribute. From this double-scaled version of MRK we are able to reconstruct the full hexagon remainder function in MRK up to five loops by invoking single-valuedness of the results.

قيم البحث

اقرأ أيضاً

A recent, integrability-based conjecture in the framework of the Wilson loop OPE for N=4 SYM theory, predicts the leading OPE contribution for the hexagon MHV remainder function and NMHV ratio function to all loops, in integral form. We prove that th ese integrals evaluate to a particular basis of harmonic polylogarithms, at any order in the weak coupling expansion. The proof constitutes an algorithm for the direct computation of the integrals, which we employ in order to obtain the full (N)MHV OPE contribution in question up to 6 loops, and certain parts of it up to 12 loops. We attach computer-readable files with our results, as well as an algorithm implementation which may be readily used to generate higher-loop corrections. The feasibility of obtaining the explicit kinematical dependence of the first term in the OPE in principle at arbitrary loop order, offers promise for the suitability of this approach as a non-perturbative description of Wilson loops/scattering amplitudes.
The finite remainder function for planar, color-ordered, maximally helicity violating scattering processes in N=4 super Yang-Mills theory possesses a non-vanishing multi-Regge limit that depends on the choice of a Mandelstam region. We analyze the co mbined multi-Regge collinear limit in all Mandelstam regions through an analytic continuation of the Wilson loop OPE. At leading order, the former is determined by the gluon excitation of the Gubser-Klebanov-Polyakov string. We illustrate the general procedure at the example of the heptagon remainder function at two loops. In this case, the continuation of the leading order terms in the Wilson loop OPE suffices to determine the two-loop multi-Regge heptagon functions in all Mandelstam regions from their symbols. The expressions we obtain are fully consistent with recent results by Del Duca et al.
We introduce a method to extract the symbol of the coefficient of $(2pi i)^2$ of MHV remainder functions in planar N=4 Super Yang-Mills in multi-Regge kinematics region directly from the symbol in full kinematics. At two loops this symbol can be upli fted to the full function in a unique way, without any beyond-the-symbol ambiguities. We can therefore determine all two-loop MHV amplitudes at function level in all kinematic regions with different energy signs in multi-Regge kinematics. We analyse our results and we observe that they are consistent with the hypothesis of a contribution from the exchange of a three-Reggeon composite state starting from two loops and eight points in certain kinematic regions.
We present an all-loop dispersion integral, well-defined to arbitrary logarithmic accuracy, describing the multi-Regge limit of the 2->5 amplitude in planar N=4 super Yang-Mills theory. It follows from factorization, dual conformal symmetry and consi stency with soft limits, and specifically holds in the region where the energies of all produced particles have been analytically continued. After promoting the known symbol of the 2-loop N-particle MHV amplitude in this region to a function, we specialize to N=7, and extract from it the next-to-leading order (NLO) correction to the BFKL central emission vertex, namely the building block of the dispersion integral that had not yet appeared in the well-studied six-gluon case. As an application of our results, we explicitly compute the seven-gluon amplitude at next-to-leading logarithmic accuracy through 5 loops for the MHV case, and through 3 and 4 loops for the two independent NMHV helicity configurations, respectively.
We present the technique for resummation of flux tube excitations series arising in pentagon operator expansion program for polygonal Wilson loops in N=4 SYM. Here we restrict ourselves with contributions of one-particle effective states and consider as a particular example NMHV 6 particle amplitude at one-loop. The presented technique is also applicable at higher loops for one effective particle contributions and has the potential for generalization for contributions with more effective particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا