ﻻ يوجد ملخص باللغة العربية
We analyse the OPE contribution of gluon bound states in the double scaling limit of the hexagonal Wilson loop in planar N=4 super Yang-Mills theory. We provide a systematic procedure for perturbatively resumming the contributions from single-particle bound states of gluons and expressing the result order by order in terms of two-variable polylogarithms. We also analyse certain contributions from two-particle gluon bound states and find that, after analytic continuation to the $2to 4$ Mandelstam region and passing to multi-Regge kinematics (MRK), only the single-particle gluon bound states contribute. From this double-scaled version of MRK we are able to reconstruct the full hexagon remainder function in MRK up to five loops by invoking single-valuedness of the results.
A recent, integrability-based conjecture in the framework of the Wilson loop OPE for N=4 SYM theory, predicts the leading OPE contribution for the hexagon MHV remainder function and NMHV ratio function to all loops, in integral form. We prove that th
The finite remainder function for planar, color-ordered, maximally helicity violating scattering processes in N=4 super Yang-Mills theory possesses a non-vanishing multi-Regge limit that depends on the choice of a Mandelstam region. We analyze the co
We introduce a method to extract the symbol of the coefficient of $(2pi i)^2$ of MHV remainder functions in planar N=4 Super Yang-Mills in multi-Regge kinematics region directly from the symbol in full kinematics. At two loops this symbol can be upli
We present an all-loop dispersion integral, well-defined to arbitrary logarithmic accuracy, describing the multi-Regge limit of the 2->5 amplitude in planar N=4 super Yang-Mills theory. It follows from factorization, dual conformal symmetry and consi
We present the technique for resummation of flux tube excitations series arising in pentagon operator expansion program for polygonal Wilson loops in N=4 SYM. Here we restrict ourselves with contributions of one-particle effective states and consider