ﻻ يوجد ملخص باللغة العربية
The area of Handwritten Signature Verification has been broadly researched in the last decades, but remains an open research problem. The objective of signature verification systems is to discriminate if a given signature is genuine (produced by the claimed individual), or a forgery (produced by an impostor). This has demonstrated to be a challenging task, in particular in the offline (static) scenario, that uses images of scanned signatures, where the dynamic information about the signing process is not available. Many advancements have been proposed in the literature in the last 5-10 years, most notably the application of Deep Learning methods to learn feature representations from signature images. In this paper, we present how the problem has been handled in the past few decades, analyze the recent advancements in the field, and the potential directions for future research.
The phenomenon of Adversarial Examples is attracting increasing interest from the Machine Learning community, due to its significant impact to the security of Machine Learning systems. Adversarial examples are similar (from a perceptual notion of sim
Verifying the identity of a person using handwritten signatures is challenging in the presence of skilled forgeries, where a forger has access to a persons signature and deliberately attempt to imitate it. In offline (static) signature verification,
Usually, in a real-world scenario, few signature samples are available to train an automatic signature verification system (ASVS). However, such systems do indeed need a lot of signatures to achieve an acceptable performance. Neuromotor signature dup
Research on Offline Handwritten Signature Verification explored a large variety of handcrafted feature extractors, ranging from graphology, texture descriptors to interest points. In spite of advancements in the last decades, performance of such syst
Automatic Offline Handwritten Signature Verification has been researched over the last few decades from several perspectives, using insights from graphology, computer vision, signal processing, among others. In spite of the advancements on the field,