ﻻ يوجد ملخص باللغة العربية
In order to significantly reduce the fine-tuning associated with the electroweak symmetry breaking in the minimal supersymmetric standard model (MSSM), we consider not only the minimal gravity mediation effects but also the minimal gauge mediation ones for a common supersymmetry breaking source at a hidden sector. In this Minimal Mixed Mediation model, the minimal forms for the Kahler potential and the gauge kinetic function are employed at tree level. The MSSM gaugino masses are radiatively generated through the gauge mediation. Since a focus point of the soft Higgs mass parameter, m_{h_u}^2 appears around 3-4 TeV energy scale in this case, m_{h_u}^2 is quite insensitive to stop masses. Instead, the naturalness of the small m_{h_u}^2 is more closely associated with the gluino mass rather than the stop mass unlike the conventional scenario. As a result, even a 3-4 TeV stop mass, which is known to explain the 125 GeV Higgs mass at three-loop level, can still be compatible with the naturalness of the electroweak scale. On the other hand, the requirements of various fine-tuning measures much smaller than 100 and |mu| < 600 GeV constrain the gluino mass to be 1.6 TeV < M_3 < 2.2 TeV, which is well-inside the discovery potential range of LHC RunII.
We employ both the minimal gravity- and the minimal gauge mediations of supersymmetry breaking at the grand unified theory (GUT) scale in a single supergravity framework, assuming the gaugino masses are generated dominantly by the minimal gauge media
We employ both the minimal gravity- and the minimal gauge mediations of supersymmetry breaking at the grand unified theory (GUT) scale in a single supergravity framework, assuming the gaugino masses are generated dominantly by the minimal gauge media
Supersymmetry breaking in a metastable vacuum allows one to build simple and concrete models of gauge mediation. Generation of gaugino masses requires that R-symmetry be broken in this vacuum. In general, there are two possible ways to break R-symmet
Recent progress in realising dynamical supersymmetry breaking allows the construction of simple and calculable models of gauge mediation. We discuss the phenomenology of the particularly minimal case in which the mediation is direct, and show that th
We consider a scenario where the supersymmetry breaking and its mediation, and the cancellation of the theta parameter of SU(3)c are all caused by a single chiral multiplet. The string axion multiplet is a natural candidate of such a single superfiel