ﻻ يوجد ملخص باللغة العربية
We explore a thermal mechanism of changing the anisotropy by femtosecond laser pulses in dielectric ferrimagnetic garnets by taking a low symmetry (YBiPrLu)3(FeGa)5O12 film grown on the (210)-oriented Gd3Ga5O12 substrate as a model media. We demonstrate by means of spectral magneto-optical pump-probe technique and phenomenological analysis, that the magnetization precession in such a film is triggered by laser-induced changes of the growth-induced magnetic anisotropy along with the well-known ultrafast inverse Faraday effect. The change of magnetic anisotropy is mediated by the lattice heating induced by laser pulses of arbitrary polarization on a picosecond time scale. We show that the orientation of the external magnetic field with respect to the magnetization easy plane noticeably affects the precession excited via the anisotropy change. Importantly, the relative contributions from the ultrafast inverse Faraday effect and the change of different growth-induced anisotropy parameters can be controlled by varying the applied magnetic field strength and direction. As a result, the amplitude and the initial phase of the excited magnetization precession can be gradually tuned.
We use time-resolved x-ray resonant magnetic scattering (tr-XRMS) at the Co M$_{2,3}$- and Tb O$_1$-edges to study ultrafast demagnetization in an amorphous Co$_{88}$Tb$_{12}$ alloy with stripe domains. Combining the femtosecond temporal with nanomet
We use time-resolved molecular orbital mapping to explore fundamental processes of excited wave packets and charge transfer dynamics in organic films on femtosecond time scales. We investigate a bilayer pentacene film on Ag(110) by optical laser pump
The response in capacitance to low external magnetic fields (up to 0.1 T) of suspensions of spherical magnetic nanoparticles, single-wall carbon nanotubes (SWCNT), SWCNT functionalized with carboxyl group (SWCNT-COOH) and SWCNT functionalized with Fe
Dynamical strain generated upon excitation of a metallic film by a femtosecond laser pulse may become a versatile tool enabling control of magnetic state of thin films and nanostructures via inverse magnetostriction on a picosecond time scale. Here w
Laser induced ultrafast demagnetization in ferromagnetic metals was discovered almost 20 years ago, but currently there is still lack of consensus on the microscopic mechanism responsible for the corresponding transfer of angular momentum and energy