ترغب بنشر مسار تعليمي؟ اضغط هنا

Static spectropolarimeter concept adapted to space conditions and wide spectrum constraints

57   0   0.0 ( 0 )
 نشر من قبل Martin Pertenais
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The issues related to moving elements in space and instruments working in broader wavelength ranges lead to a need for robust polarimeters, efficient on a wide spectral domain, and adapted to space conditions. As part of the UVMag consortium, created to develop spectropolarimetric UV facilities in space, such as the Arago mission project, we present an innovative concept of static spectropolarimetry. We studied a static and polychromatic method for spectropolarimetry, applicable to stellar physics. Instead of modulating the polarization information temporally, as usually done in spectropolarimeters, the modulation is performed in a spatial direction, orthogonal to the spectral one. Thanks to the proportionality between phase retardance imposed by a birefringent material and its thickness, birefringent wedges can be used to create this spatial modulation. The light is then spectrally cross-dispersed, and a full-Stokes determination of the polarization over the whole spectrum can be obtained with a single-shot measurement. The use of Magnesium Fluoride wedges, for example, could lead to a compact, static polarimeter working at wavelengths from 0.115 mm up to 7 mm. We present the theory and simulations of this concept, as well as laboratory validation and a practical application to Arago.


قيم البحث

اقرأ أيضاً

144 - Eduard Muslimov 2018
The present paper describes the current baseline optical design of POLLUX, a high-resolution spectropolarimeter for the future LUVOIR mission. The instrument will operate in the ultraviolet (UV) domain from 90 to 390 nm in both spectropolarimetric an d pure spectroscopic modes. The working range is split between 3 channels -- far (90-124.5 nm), medium (118.5-195 nm) and near (195-390 nm) UV. Each of the channels is composed of a polarimeter followed by an echelle spectrograph consisting of a classical off-axis paraboloid collimator, echelle grating with a high grooves frequency and a cross-disperser grating operating also as a camera. The latter component integrates some advanced technologies: it is a blazed grating with a complex grooves pattern formed by holographic recording, which is manufactured on a freeform surface. One of the key features underlying the current design is the large spectral length of each order ~6 nm, which allows to record wide spectral lines without any discontinuities. The modelling results show that the optical design will provide the required spectral resolving power higher than R ~ 120,000 over the entire working range for a point source object with angular size of 30 mas. It is also shown that with the 15-m primary mirror of the LUVOIR telescope the instrument will provide an effective collecting area up to 38 569 cm 2. Such a performance will allow to perform a number of groundbreaking scientific observations. Finally, the future work and the technological risks of the design are discussed in details.
75 - JF Donati , D Kouach , M Lacombe 2018
SPIRou is a near-infrared (nIR) spectropolarimeter / velocimeter for the Canada-France-Hawaii Telescope (CFHT), that will focus on two forefront science topics, (i) the quest for habitable Earth-like planets around nearby M stars, and (ii) the study of low-mass star/planet formation in the presence of magnetic fields. SPIRou will also efficiently tackle many key programmes beyond these two main goals, from weather patterns on brown dwarfs to Solar-System planet and exoplanet atmospheres. SPIRou will cover a wide spectral domain in a single exposure (0.98-2.44um at a resolving power of 70K, yielding unpolarized and polarized spectra of low-mass stars with a 15% average throughput at a radial velocity (RV) precision of 1 m/s. It consists of a Cassegrain unit mounted at the Cassegrain focus of CFHT and featuring an achromatic polarimeter, coupled to a cryogenic spectrograph cooled down at 80K through a fluoride fiber link. SPIRou is currently integrated at IRAP/OMP and will be mounted at CFHT in 2017 Q4 for a first light scheduled in late 2017. Science operation is predicted to begin in 2018 S2, allowing many fruitful synergies with major ground and space instruments such as the JWST, TESS, ALMA and later-on PLATO and the ELT.
The Origins Space Telescope (Origins) traces our cosmic history, from the formation of the first galaxies and the rise of metals to the development of habitable worlds and present-day life. Origins does this through exquisite sensitivity to infrared radiation from ions, atoms, molecules, dust, water vapor and ice, and observations of extra-solar planetary atmospheres, protoplanetary disks, and large-area extragalactic fields. Origins operates in the wavelength range 2.8 to 588 microns and is 1000 times more sensitive than its predecessors due to its large, cold (4.5 K) telescope and advanced instruments. Origins was one of four large missions studied by the community with support from NASA and industry in preparation for the 2020 Decadal Survey in Astrophysics. This is the final study report.
Astronomical spectropolarimeters can be subject to many sources of systematic error which limit the precision and accuracy of the instrument. We present a calibration method for observing high-resolution polarized spectra using chromatic liquid-cryst al variable retarders (LCVRs). These LCVRs allow for polarimetric modulation of the incident light without any moving optics at frequencies >10Hz. We demonstrate a calibration method using pure Stokes input states that enables an achromatization of the system. This Stokes-based deprojection method reproduces input polarization even though highly chromatic instrument effects exist. This process is first demonstrated in a laboratory spectropolarimeter where we characterize the LCVRs and show example deprojections. The process is then implemented the a newly upgraded HiVIS spectropolarimeter on the 3.67m AEOS telescope. The HiVIS spectropolarimeter has also been expanded to include broad-band full-Stokes spectropolarimetry using achromatic wave-plates in addition to the tunable full-Stokes polarimetric mode using LCVRs. These two new polarimetric modes in combination with a new polarimetric calibration unit provide a much more sensitive polarimetric package with greatly reduced systematic error.
We present here our observations and analysis of the dayside emission spectrum of the hot Jupiter WASP-103b. We observed WASP-103b during secondary eclipse using two visits of the Hubble Space Telescope with the G141 grism on Wide Field Camera 3 in s patial scan mode. We generated secondary eclipse light curves of the planet in both blended white-light and spectrally binned wavechannels from 1.1-1.7 micron and corrected the light curves for flux contamination from a nearby companion star. We modeled the detector systematics and secondary eclipse spectrum using Gaussian process regression and found that the near-IR emission spectrum of WASP-103b is featureless across the observed near-IR region to down to a sensitivity of 175 ppm, and shows a shallow slope towards the red. The atmosphere has a single brightness temperature of T_B = 2890 K across this wavelength range. This region of the spectrum is indistinguishable from isothermal, but may not manifest from a physically isothermal system, i.e. pseudo-isothermal. A Solar-metallicity profile with a thermal inversion layer at 10^-2 bar fits WASP-103bs spectrum with high confidence, as do an isothermal profile with Solar metallicity and a monotonically decreasing atmosphere with C/O>1. The data rule out a monotonically decreasing atmospheric profile with Solar composition, and we rule out a low-metallicity decreasing profile as non-physical for this system. The pseudo-isothermal profile could be explained by a thermal inversion layer just above the layer probed by our observations, or by clouds or haze in the upper atmosphere. Transmission spectra at optical wavelengths would allow us to better differentiate between potential atmospheric models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا