ترغب بنشر مسار تعليمي؟ اضغط هنا

How environment drives galaxy evolution: lessons learnt from satellite galaxies

90   0   0.0 ( 0 )
 نشر من قبل Anna Pasquali
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Pasquali




اسأل ChatGPT حول البحث

It is by now well established that galaxy evolution is driven by intrinsic and environmental processes, both contributing to shape the observed properties of galaxies. A number of early studies, both observational and theoretical, have shown that the star formation activity of galaxies depends on their environmental local density and also on galaxy hierarchy, i.e. centrals vs. satellites. In fact, contrary to their central (most massive) galaxy of a group/cluster, satellite galaxies are stripped of their gas and stars, and have their star formation quenched by their environment. Large galaxy surveys like SDSS now permit us to investigate in detail environment-driven transformation processes by comparing centrals and satellites. In this paper I summarize what we have so far learnt about environmental effects by analysing the observed properties of local central and satellite galaxies in SDSS, as a function of their stellar mass and the dark matter mass of their host group/cluster.

قيم البحث

اقرأ أيضاً

86 - V. Beckmann , C. Ricci , S. Soldi 2010
The INTEGRAL mission provides a large data set for studying the hard X-ray properties of AGN and allows to test the unified scheme for AGN. We present results based on the analysis of 199 AGN. A difference between the Seyfert types is detected in sli ghtly flatter spectra with higher cut-off energies and lower luminosities for the more absorbed/type 2 AGN. When applying a Compton reflection model, the underlying continua (photon index 1.95) appear the same in Seyfert 1 and 2, and the reflection strength is R=1 in both cases, with differences in the inclination angle only. A difference is seen in the sense that Seyfert 1 are on average twice as luminous in hard X-rays than the Seyfert 2 galaxies. The unified model for Seyfert galaxies seems to hold, showing in hard X-rays that the central engine is the same in Seyfert 1 and 2 galaxies, seen under different inclination angle and absorption. Based on our knowledge of AGN from INTEGRAL data, we briefly outline open questions and investigations to answer them. In this context an ultra-deep (>= 12 Ms) extragalactic field can be a true legacy of the INTEGRAL mission in the area of AGN studies.
The FOCUS photoproduction experiment took data in the ninenties and produced a wealth of results in charm physics. Some of the studies were seminal for contemporary experiments, and even paved the way for the technology of many charm and beauty analysis tools.
Using the Sloan Digital Sky Survey, we adopt the sSFR-$Sigma_{1kpc}$ diagram as a diagnostic tool to understand quenching in different environments. sSFR is the specific star formation rate, and $Sigma_{1kpc}$ is the stellar surface density in the in ner kpc. Although both the host halo mass and group-centric distance affect the satellite population, we find that these can be characterised by a single number, the quenched fraction, such that key features of the sSFR-$Sigma_{1kpc}$ diagram vary smoothly with this proxy for the environment. Particularly, the sSFR of star-forming galaxies decreases smoothly with this quenched fraction, the sSFR of satellites being 0.1 dex lower than in the field. Furthermore, $Sigma_{1kpc}$ of the transition galaxies (i.e., the green valley or GV) decreases smoothly with the environment, by as much as 0.2 dex for $M_* = 10^{9.75-10} M_{odot}$ from the field, and decreasing for satellites in larger halos and at smaller radial distances within same-mass halos. We interpret this shift as indicating the relative importance of todays field quenching track vs. the cluster quenching track. These environmental effects in the sSFR-$Sigma_{1kpc}$ diagram are most significant in our lowest mass range ($9.75 < log M_{*}/M_{odot} < 10$). One feature that is shared between all environments is that at a given $M_{*}$ quenched galaxies have about 0.2-0.3 dex higher $Sigma_{1kpc}$ than the star-forming population. These results indicate that either $Sigma_{1kpc}$ increases (subsequent to satellite quenching), or $Sigma_{1kpc}$ for individual galaxies remains unchanged, but the original $M_*$ or the time of quenching is significantly different from those now in the GV.
One important result from recent large integral field spectrograph (IFS) surveys is that the intrinsic velocity dispersion of galaxies traced by star-forming gas increases with redshift. Massive, rotation-dominated discs are already in place at z~2, but they are dynamically hotter than spiral galaxies in the local Universe. Although several plausible mechanisms for this elevated velocity dispersion (e.g. star formation feedback, elevated gas supply, or more frequent galaxy interactions) have been proposed, the fundamental driver of the velocity dispersion enhancement at high redshift remains unclear. We investigate the origin of this kinematic evolution using a suite of cosmological simulations from the FIRE (Feedback In Realistic Environments) project. Although IFS surveys generally cover a wider range of stellar masses than in these simulations, the simulated galaxies show trends between intrinsic velocity dispersion, SFR, and redshift in agreement with observations. In both the observed and simulated galaxies, intrinsic velocity dispersion is positively correlated with SFR. Intrinsic velocity dispersion increases with redshift out to z~1 and then flattens beyond that. In the FIRE simulations, intrinsic velocity dispersion can vary significantly on timescales of <100 Myr. These variations closely mirror the time evolution of the SFR and gas inflow rate. By cross-correlating pairs of intrinsic velocity dispersion, gas inflow rate, and SFR, we show that increased gas inflow leads to subsequent enhanced star formation, and enhancements in intrinsic velocity dispersion tend to temporally coincide with increases in gas inflow rate and SFR.
We investigate how star formation quenching proceeds within central and satellite galaxies using spatially resolved spectroscopy from the SDSS-IV MaNGA DR15. We adopt a complete sample of star formation rate surface densities ($Sigma_{rm SFR}$), deri ved in Bluck et al. (2020), to compute the distance at which each spaxel resides from the resolved star forming main sequence ($Sigma_{rm SFR} - Sigma_*$ relation): $Delta Sigma_{rm SFR}$. We study galaxy radial profiles in $Delta Sigma_{rm SFR}$, and luminosity weighted stellar age (${rm Age_L}$), split by a variety of intrinsic and environmental parameters. Via several statistical analyses, we establish that the quenching of central galaxies is governed by intrinsic parameters, with central velocity dispersion ($sigma_c$) being the most important single parameter. High mass satellites quench in a very similar manner to centrals. Conversely, low mass satellite quenching is governed primarily by environmental parameters, with local galaxy over-density ($delta_5$) being the most important single parameter. Utilising the empirical $M_{BH}$ - $sigma_c$ relation, we estimate that quenching via AGN feedback must occur at $M_{BH} geq 10^{6.5-7.5} M_{odot}$, and is marked by steeply rising $Delta Sigma_{rm SFR}$ radial profiles in the green valley, indicating `inside-out quenching. On the other hand, environmental quenching occurs at over-densities of 10 - 30 times the average galaxy density at z$sim$0.1, and is marked by steeply declining $Delta Sigma_{rm SFR}$ profiles, indicating `outside-in quenching. Finally, through an analysis of stellar metallicities, we conclude that both intrinsic and environmental quenching must incorporate significant starvation of gas supply.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا