ترغب بنشر مسار تعليمي؟ اضغط هنا

First Physics Results at the Physical Pion Mass from $N_f = 2$ Wilson Twisted Mass Fermions at Maximal Twist

86   0   0.0 ( 0 )
 نشر من قبل Bartosz Kostrzewa
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present physics results from simulations of QCD using $N_f = 2$ dynamical Wilson twisted mass fermions at the physical value of the pion mass. These simulations were enabled by the addition of the clover term to the twisted mass quark action. We show evidence that compared to previous simulations without this term, the pion mass splitting due to isospin breaking is almost completely eliminated. Using this new action, we compute the masses and decay constants of pseudoscalar mesons involving the dynamical up and down as well as valence strange and charm quarks at one value of the lattice spacing, $a approx 0.09$ fm. Further, we determine renormalized quark masses as well as their scale-independent ratios, in excellent agreement with other lattice determinations in the continuum limit. In the baryon sector, we show that the nucleon mass is compatible with its physical value and that the masses of the $Delta$ baryons do not show any sign of isospin breaking. Finally, we compute the electron, muon and tau lepton anomalous magnetic moments and show the results to be consistent with extrapolations of older ETMC data to the continuum and physical pion mass limits. We mostly find remarkably good agreement with phenomenology, even though we cannot take the continuum and thermodynamic limits.

قيم البحث

اقرأ أيضاً

We present results for the eta prime meson and the topological susceptibility in two flavour lattice QCD. The results are obtained using Wilson twisted mass fermions at maximal twist with pion masses ranging from 340 MeV down to the physical point. A comparison to literature values is performed giving a handle on discretisation effects.
We present the results of an extended scaling test of quenched Wilson twisted mass QCD. We fix the twist angle by using two definitions of the critical mass, the first obtained by requiring the vanishing of the pseudoscalar meson mass m_PS for standa rd Wilson fermions and the second by requiring restoration of parity at non-zero value of the twisted mass mu and subsequently extrapolating to mu=0. Depending on the choice of the critical mass we simulate at values of beta in [5.7,6.45], for a range of pseudoscalar meson masses 250 MeV < m_PS < 1 GeV and we perform the continuum limit for the pseudoscalar meson decay constant f_PS and various hadron masses (vector meson m_V, baryon octet m_oct and baryon decuplet m_dec) at fixed value of r_0 m_PS. For both definitions of the critical mass, lattice artifacts are consistent with O(a) improvement. However, with the second definition, large O(a^2) discretization errors present at small quark mass with the first definition are strongly suppressed. The results in the continuum limit are in very good agreement with those from the Alpha and CP-PACS Collaborations.
We present results for the interaction of two kaons at maximal isospin. The calculation is based on 2+1+1 flavour gauge configurations generated by the ETM Collaboration (ETMC) featuring pion masses ranging from about 230 MeV to 450 MeV at three valu es of the lattice spacing. The elastic scattering length $a_0^{I=1}$ is calculated at several values of the bare strange quark and light quark masses. We find $M_K a_0 =-0.397(11)(_{-8}^{+0})$ as the result of a chiral and continuum extrapolation to the physical point. This number is compared to other lattice results.
We present a determination of the ratio of kaon and pion leptonic decay constants in isosymmetric QCD (isoQCD), $f_K / f_pi$, making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks, including configurations close to the physical point for all dynamical flavors. The simulations are carried out at three values of the lattice spacing ranging from $sim 0.068$ to $sim 0.092$ fm with linear lattice size up to $L sim 5.5$~fm. The scale is set by the PDG value of the pion decay constant, $f_pi^{isoQCD} = 130.4~(2)$ MeV, at the isoQCD pion point, $M_pi^{isoQCD} = 135.0~(2)$ MeV, obtaining for the gradient-flow (GF) scales the values $w_0 = 0.17383~(63)$ fm, $sqrt{t_0} = 0.14436~(61)$ fm and $t_0 / w_0 = 0.11969~(62)$ fm. The data are analyzed within the framework of SU(2) Chiral Perturbation Theory (ChPT) without resorting to the use of renormalized quark masses. Fixing the strange quark mass by using $M_K^{isoQCD} = 494.2~(4)$ MeV, we get $(f_K / f_pi)^{isoQCD} = 1.1995~(44)$ fm, where the error includes both statistical and systematic uncertainties. Implications for the Cabibbo-Kobayashi-Maskawa (CKM) matrix element $|V_{us}|$ and for the first-row CKM unitarity are discussed.
We present a precise lattice QCD determination of the b-quark mass, of the B and Bs decay constants and first preliminary results for the B-mesons bag parameter. Simulations are performed with Nf = 2 Wilson twisted mass fermions at four values of the lattice spacing and the results are extrapolated to the continuum limit. Our calculation benefits from the use of improved interpolating operators for the B-mesons and employs the so-called ratio method. The latter allows a controlled interpolation at the b-quark mass between the relativistic data around and above the charm quark mass and the exactly known static limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا