ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Possibility of Improving the Orbits of Satellites Based on Observations of Isolated X-ray Pulsars

203   0   0.0 ( 0 )
 نشر من قبل Alexander Lutovinov
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M.G. Revnivtsev




اسأل ChatGPT حول البحث

At present, there is a great worldwide interest in the development of technologies that allow information about the X-ray emission from pulsating cosmic sources to be used to obtain navigation solutions for deep-space spacecraft. In this paper, we illustrate the technique for determining the spatial position of a spacecraft based on the already existing data from the RXTE X-ray space observatory. We show that the spacecraft position toward the Crab pulsar can be determined using an X-ray detector with an effective area of about 0.6 sq.m in the energy range 3-15 keV with an accuracy up to 730 m in a signal integration time of 1000 s. Extending the energy range to 1 keV (the efficiency of the RXTE/PCA spectrometer decreases dramatically at energies below 3 keV) will allow a spacecraft position accuracy of 400-450 m to be achieved at the same effective area and up to 300-350 m when using detectors with an effective area of ~1 sq.m in the energy range 1-10 keV.

قيم البحث

اقرأ أيضاً

The analysis of distributions of some parameters of radio pulsars emitting X-ray radiation was carried out. The majority of such pulsars has short spin periods with the average value $< P >$ = 133 msec. The distribution of period derivatives reveals a bimodality, dividing millisecond ($< log dfrac{dP}{dt}>$ = -19.69) and normal ($< log dfrac{dP}{dt}> $ = -13.29) pulsars. Magnetic fields at the surface of the neutron star are characterized by the bimodal distribution as well. The mean values of $<log B_s>$ are $8.48$ and $12.41$ for millisecond pulsars and normal ones, respectively. The distribution of magnetic fields near the light cylinder, it does not show the noticeable bimodality. The median value of $log B_{lc}$ = 4.43 is almost three orders higher comparing with this quantity ($<log B_{lc}>$ = 1.75) for radio pulsars without registered X-ray emission. Losses of rotational energy ($<log dfrac{dE}{dt}>$ = 35.24) are also three orders higher than corresponding values for normal pulsars. There is the strong correlation between X-ray luminosities and losses of rotational energies. The dependence of the X-ray luminosity on the magnetic field at the light cylinder has been detected. It shows that the generation of the non-thermal X-ray emission takes place at the periphery of the magnetosphere and is caused by the synchrotron mechanism. We detected the positive correlations between luminosities in radio, X-ray and gamma -ray ranges. Such correlations give the possibility to carry out a purposeful search for pulsars in one of these ranges if they radiate in other one.
126 - Fabrice Mottez 2011
A planet orbiting around a pulsar would be immersed in an ultra-relativistic under-dense plasma flow. It would behave as a unipolar inductor, with a significant potential drop along the planet. As for Io in Jupiters magnetosphere, there would be two stationary Alfven waves, the Alfven wings (AW), attached to the planet. The AW would be supported by strong electric currents, in some circumstances comparable to those of a pulsar. It would be a cause of powerful radio waves emitted all along the AW, and highly collimated through relativistic aberration. There would be a chance to detect these radio-emissions from Earth. The emission would be pulses as for ordinary pulsars; their occurrence would depend on the planet-star-observer angle. These results are still preliminary, further work needs to be done.
We describe the first X-ray observations of five short orbital period ($P_B < 1$ day), $gamma$-ray emitting, binary millisecond pulsars. Four of these, PSRs J0023+0923, J1124$-$3653, J1810+1744, and J2256$-$1024 are `black-widow pulsars, with degener ate companions of mass $ll0.1 M_{odot}$, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing `redback with a near Roche-lobe filling $sim$0.2 solar mass non-degenerate companion. Data were taken using the textit{Chandra X-Ray Observatory} and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256$-$1024, show significant orbital variability while PSR J1124$-$3653 shows marginal orbital variability. The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission and is similar to what has been detected in the low-mass X-ray binary to millisecond pulsar transition object PSR J1023+0038.
We study properties of luminous X-ray pulsars using a simplified model of the accretion column. The maximal possible luminosity is calculated as a function of the neutron star (NS) magnetic field and spin period. It is shown that the luminosity can r each values of the order of $10^{40},{rm erg/s}$ for the magnetar-like magnetic field ($Bgtrsim 10^{14},{rm G}$) and long spin periods ($Pgtrsim 1.5,{rm s}$). The relative narrowness of an area of feasible NS parameters which are able to provide higher luminosities leads to the conclusion that $Lsimeq 10^{40},,{rm erg/s}$ is a good estimate for the limiting accretion luminosity of a NS. Because this luminosity coincides with the cut-off observed in the high mass X-ray binaries luminosity function which otherwise does not show any features at lower luminosities, we can conclude that a substantial part of ultra-luminous X-ray sources are accreting neutron stars in binary systems.
74 - P. S. Ray , M. Kerr , D. Parent 2010
We present precise phase-connected pulse timing solutions for 16 gamma-ray-selected pulsars recently discovered using the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope plus one very faint radio pulsar (PSR J1124-5916) that is more effectively timed with the LAT. We describe the analysis techniques including a maximum likelihood method for determining pulse times of arrival from unbinned photon data. A major result of this work is improved position determinations, which are crucial for multi-wavelength follow up. For most of the pulsars, we overlay the timing localizations on X-ray images from Swift and describe the status of X-ray counterpart associations. We report glitches measured in PSRs J0007+7303, J1124-5916, and J1813-1246. We analyze a new 20 ks Chandra ACIS observation of PSR J0633+0632 that reveals an arcminute-scale X-ray nebula extending to the south of the pulsar. We were also able to precisely localize the X-ray point source counterpart to the pulsar and find a spectrum that can be described by an absorbed blackbody or neutron star atmosphere with a hard powerlaw component. Another Chandra ACIS image of PSR J1732-3131 reveals a faint X-ray point source at a location consistent with the timing position of the pulsar. Finally, we present a compilation of new and archival searches for radio pulsations from each of the gamma-ray-selected pulsars as well as a new Parkes radio observation of PSR J1124-5916 to establish the gamma-ray to radio phase offset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا