ترغب بنشر مسار تعليمي؟ اضغط هنا

The Extreme Ultraviolet Spectrum of the Kinetically Dominated Quasar 3C 270.1

254   0   0.0 ( 0 )
 نشر من قبل Brian Punsly
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Only a handful of quasars have been identified as kinetically dominated, their long term time averaged jet power, $overline{Q}$, exceeds the bolometric thermal emission, $L_{bol}$, associated with the accretion flow. This letter presents the first extreme ultraviolet (EUV) spectrum of a kinetically dominated quasar, 3C 270.1. The EUV continuum flux density of 3C 270.1 is very steep, $F_{ u} sim u^{-alpha_{EUV}}$, $alpha_{EUV} =2.98pm 0.15$. This value is consistent with the correlation of $overline{Q}/L_{bol}$ and $alpha_{EUV}$ found in previous studies of the EUV continuum of quasars, the EUV deficit of radio loud quasars. Curiously, although ultraviolet broad absorption line (BAL) troughs in quasar spectra are anti-correlated with $overline{Q}$, 3C 270.1 has been considered a BAL quasar based on an SDSS spectrum. This claim is examined in terms of the EUV spectrum of OVI 1and the highest resolution CIV spectrum in the archival data and the SDSS spectrum. First, from [OIII]4959,5007 (IR) observations and the UV spectral lines, it is concluded that the correct redshift for 3C 270.1 is 1.5266. It is then found that the standard measure of broad absorption, BALnicity = 0, for MgII 2800, CIV 1549 and OVI 1032 in all epochs.



قيم البحث

اقرأ أيضاً

Chandra X-ray observations of the high redshift (z =1.532) radio-loud quasar 3C270.1 in 2008 February show the nucleus to have a power-law spectrum, Gamma = 1.66 +/- 0.08, typical of a radio-loud quasar, and a marginally-detected Fe Kalpha emission l ine. The data also reveal extended X-ray emission, about half of which is associated with the radio emission from this source. The southern emission is co-spatial with the radio lobe and peaks at the position of the double radio hotspot. Modeling this hotspot including Spitzer upper limits rules out synchrotron emission from a single power-law population of electrons, favoring inverse-Compton emission with a field of ~11nT, roughly a third of the equipartition value. The northern emission is concentrated close to the location of a 40 deg. bend where the radio jet is presumed to encounter external material. It can be explained by inverse Compton emission involving Cosmic Microwave Background photons with a field of ~3nT, roughly a factor of nine below the equipartition value. The remaining, more diffuse X-ray emission is harder (HR=-0.09 +/- 0.22). With only 22.8+/-5.6 counts, the spectral form cannot be constrained. Assuming thermal emission with a temperature of 4 keV yields an estimate for the luminosity of 1.8E44 erg/s, consistent with the luminosity-temperature relation of lower-redshift clusters. However deeper Chandra X-ray observations are required to delineate the spatial distribution, and better constrain the spectrum of the diffuse emission to verify that we have detected X-ray emission from a high-redshift cluster.
In previous studies, it has been shown that the long term time average jet power, $overline{Q}$, is correlated with the spectral index in the extreme ultraviolet (EUV), $alpha_{EUV}$ (defined by $F_{ u} sim u^{-alpha_{EUV}}$ computed between 700AA, and 1100AA,). Larger $overline{Q}$ tends to decrease the EUV emission. This is a curious relationship because it connects a long term average over $sim 10^{6}$ years with an instantaneous measurement of the EUV. The EUV appears to be emitted adjacent to the central supermassive black hole and the most straightforward explanation of the correlation is that the EUV emitting region interacts in real time with the jet launching mechanism. Alternatively stated, the $overline{Q}$ - $alpha_{EUV}$ correlation is a manifestation of a contemporaneous (real time) jet power, $Q(t)$, correlation with $alpha_{EUV}$. In order to explore this possibility, this paper considers the time variability of the strong radio jet of the quasar 1442+101 that is not aberrated by strong Doppler enhancement. This high redshift (z = 3.55) quasar is uniquely suited for this endeavor as the EUV is redshifted into the optical observing window allowing for convenient monitoring. More importantly, it is bright enough to be seen through the Lyman forest and its radio flux is strong enough that it has been monitored frequently. Quasi-simultaneous monitoring (five epochs spanning $sim 40$ years) show that increases in $Q(t)$ correspond to decreases in the EUV as expected.
New near- and far-ultraviolet (NUV and FUV) HST spectra of Mrk 231, the nearest quasar known, are combined with ground-based optical spectra to study the remarkable dichotomy between the FUV and NUV-optical spectral regions in this object. The FUV em ission-line features are faint, broad, and highly blueshifted (up to ~7000 km/s), with no significant accompanying absorption. In contrast, the profiles of the NUV absorption features resemble those of the optical Na I D, He I, and Ca II H and K lines, exhibiting broad blue-shifted troughs that overlap in velocity space with the FUV emission-line features and indicate a dusty, high-density and patchy broad absorption line (BAL) screen covering ~90% of the observed continuum source at a distance less than ~2 - 20 pc. The FUV continuum emission does not show the presence of any obvious stellar features and is remarkably flat compared with the steeply declining NUV continuum. The NUV (FUV) features and continuum emission have not varied significantly over the past ~22 (3) years and are unresolved on scales ~40 (170) pc. These results favor an AGN origin for the NUV - FUV line and continuum emission. The observed FUV line emission is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad line region seen through the dusty BAL screen. Our data are inconsistent with the recently proposed binary black hole model. We argue instead that Mrk~231 is the nearest example of weak-lined wind-dominated quasars with high Eddington ratios and geometrically thick (slim) accretion disks; these quasars are likely more common in the early universe.
The ionising continuum from active galactic nuclei (AGN) is fundamental for interpreting their broad emission lines and understanding their impact on the surrounding gas. Furthermore, it provides hints on how matter accretes onto supermassive black h oles. Using HSTs Wide Field Camera 3 we have constructed the first stacked ultraviolet (rest-frame wavelengths 600-2500AA) spectrum of 53 luminous quasars at z=2.4, with a state-of-the-art correction for the intervening Lyman forest and Lyman continuum absorption. The continuum slope ($f_ u propto u^{alpha_ u}$) of the full sample shows a break at ~912AA with spectral index $alpha_ u=-0.61pm0.01$ at $lambda>912$AA and a softening at shorter wavelengths ($alpha_ u=-1.70 pm 0.61$ at $lambdaleq 912$AA). Our analysis proves that a proper intergalactic medium absorption correction is required to establish the intrinsic continuum emission of quasars. We interpret our average ultraviolet spectrum in the context of photoionisation, accretion disk models, and quasar contribution to the ultraviolet background. We find that observed broad line ratios are consistent with those predicted assuming an ionising slope of $alpha_mathrm{ion}=$-2.0, similar to the observed ionising spectrum in the same wavelength range. The continuum break and softening are consistent with accretion disk plus X-ray corona models when black hole spin is taken into account. Our spectral energy distribution yields a 30% increase to previous estimates of the specific quasar emissivity, such that quasars may contribute significantly to the total specific Lyman limit emissivity estimated from the Ly$alpha$ forest at z<3.2.
We analyze the behavior of the parsec-scale jet of the quasar 3C~454.3 during pronounced flaring activity in 2005-2008. Three major disturbances propagated down the jet along different trajectories with Lorentz factors $Gamma>$10. The disturbances sh ow a clear connection with millimeter-wave outbursts, in 2005 May/June, 2007 July, and 2007 December. High-amplitude optical events in the $R$-band light curve precede peaks of the millimeter-wave outbursts by 15-50 days. Each optical outburst is accompanied by an increase in X-ray activity. We associate the optical outbursts with propagation of the superluminal knots and derive the location of sites of energy dissipation in the form of radiation. The most prominent and long-lasting of these, in 2005 May, occurred closer to the black hole, while the outbursts with a shorter duration in 2005 Autumn and in 2007 might be connected with the passage of a disturbance through the millimeter-wave core of the jet. The optical outbursts, which coincide with the passage of superluminal radio knots through the core, are accompanied by systematic rotation of the position angle of optical linear polarization. Such rotation appears to be a common feature during the early stages of flares in blazars. We find correlations between optical variations and those at X-ray and $gamma$-ray energies. We conclude that the emergence of a superluminal knot from the core yields a series of optical and high-energy outbursts, and that the mm-wave core lies at the end of the jets acceleration and collimation zone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا