ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum communication in the presence of a horizon

45   0   0.0 ( 0 )
 نشر من قبل Daiqin Su
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on homodyne detection, we discuss how the presence of an event horizon affects quantum communication between an inertial partner, Alice, and a uniformly accelerated partner, Rob. We show that there exists a low frequency cutoff for Robs homodyne detector that maximizes the signal to noise ratio and it approximately corresponds to the Unruh frequency. In addition, the low frequency cutoff which minimizes the conditional variance between Alices input state and Robs output state is also approximately equal to the Unruh frequency. Thus the Unruh frequency provides a natural low frequency cutoff in order to optimize quantum communication of both classical and quantum information between Alice and Rob.

قيم البحث

اقرأ أيضاً

114 - F. Adabi , S. Haseli , S. Salimi 2016
The uncertainty principle sets lower bound on the uncertainties of two incompatible observables measured on a particle. The uncertainty lower bound can be reduced by considering a particle as a quantum memory entangled with the measured particle. In this paper, we consider a tripartite scenario in which a quantum state has been shared between Alice, Bob, and Charlie. The aim of Bob and Charlie is to minimize Charlies lower bound about Alices measurement outcomes. To this aim, they concentrate their correlation with Alice in Charlies side via a cooperative strategy based on local operations and classical communication. We obtain lower bound for Charlies uncertainty about Alices measurement outcomes after concentrating information and compare it with the lower bound without concentrating information in some examples. We also provide a physical interpretation of the entropic uncertainty lower bound based on the dense coding capacity.
Quantum mechanics challenges our intuition on the cause-effect relations in nature. Some fundamental concepts, including Reichenbachs common cause principle or the notion of local realism, have to be reconsidered. Traditionally, this is witnessed by the violation of a Bell inequality. But are Bell inequalities the only signature of the incompatibility between quantum correlations and causality theory? Motivated by this question we introduce a general framework able to estimate causal influences between two variables, without the need of interventions and irrespectively of the classical, quantum, or even post-quantum nature of a common cause. In particular, by considering the simplest instrumental scenario -- for which violation of Bell inequalities is not possible -- we show that every pure bipartite entangled state violates the classical bounds on causal influence, thus answering in negative to the posed question and opening a new venue to explore the role of causality within quantum theory.
State representations summarize our knowledge about a system. When unobservable quantities are introduced the state representation is typically no longer unique. However, this non-uniqueness does not affect subsequent inferences based on any observab le data. We demonstrate that the inference-free subspace may be extracted whenever the quantitys unobservability is guaranteed by a global conservation law. This result can generalize even without such a guarantee. In particular, we examine the coherent-state representation of a laser where the absolute phase of the electromagnetic field is believed to be unobservable. We show that experimental coherent states may be separated from the inference-free subspaces induced by this unobservable phase. These physical states may then be approximated by coherent states in a relative-phase Hilbert space.
Quantum physics is known to allow for completely new ways to create, manipulate and store information. Quantum communication - the ability to transmit quantum information - is a primitive necessary for any quantum internet. At its core, quantum commu nication generally requires the formation of entangled links between remote locations. The performance of these links is limited by the classical signaling time between such locations - necessitating the need for long lived quantum memories. Here we present the design of a communications network which neither requires the establishment of entanglement between remote locations nor the use of long-lived quantum memories. The rate at which quantum data can be transmitted along the network is only limited by the time required to perform efficient local gate operations. Our scheme thus potentially provides higher communications rates than previously thought possible.
89 - Y. C. Liu , G. R. Jin , 2010
Including collisional decoherence explicitly, phase sensitivity for estimating effective scattering strength $chi$ of a two-component Bose-Einstein condensate is derived analytically. With a measurement of spin operator $hat{J}_{x}$, we find that the optimal sensitivity depends on initial coherent spin state. It degrades by a factor of $(2gamma)^{1/3}$ below super-Heisenberg limit $propto 1/N^{3/2}$ for particle number $N$ and the dephasing rate $1<!<gamma<N^{3/4}$. With a $hat{J}_y$ measurement, our analytical results confirm that the phase $phi=chi tsim 0$ can be detected at the limit even in the presence of the dephasing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا