ﻻ يوجد ملخص باللغة العربية
Elastic network models (ENMs) are valuable and efficient tools for characterizing the collective internal dynamics of proteins based on the knowledge of their native structures. The increasing evidence that the biological functionality of RNAs is often linked to their innate internal motions, poses the question of whether ENM approaches can be successfully extended to this class of biomolecules. This issue is tackled here by considering various families of elastic networks of increasing complexity applied to a representative set of RNAs. The fluctuations predicted by the alternative ENMs are stringently validated by comparison against extensive molecular dynamics simulations and SHAPE experiments. We find that simulations and experimental data are systematically best reproduced by either an all-atom or a three-beads-per-nucleotide representation (sugar-base-phosphate), with the latter arguably providing the best balance of accuracy and computational complexity.
The computational study of conformational transitions in nucleic acids still faces many challenges. For example, in the case of single stranded RNA tetranucleotides, agreement between simulations and experiments is not satisfactory due to inaccuracie
Interaction with divalent cations is of paramount importance for RNA structural stability and function. We here report a detailed molecular dynamics study of all the possible binding sites for Mg$^{2+}$ on a RNA duplex, including both direct (inner s
The process of RNA base fraying (i.e. the transient opening of the termini of a helix) is involved in many aspects of RNA dynamics. We here use molecular dynamics simulations and Markov state models to characterize the kinetics of RNA fraying and its
Inverse statistical approaches to determine protein structure and function from Multiple Sequence Alignments (MSA) are emerging as powerful tools in computational biology. However the underlying assumptions of the relationship between the inferred ef
Recent computational efforts have shown that the current potential energy models used in molecular dynamics are not accurate enough to describe the conformational ensemble of RNA oligomers and suggest that molecular dynamics should be complemented wi