ترغب بنشر مسار تعليمي؟ اضغط هنا

Carrier envelope phase dynamics of cavity solitons: soliton stability and scaling law

214   0   0.0 ( 0 )
 نشر من قبل Chengying Bao Mr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The relationship between carrier envelope phase (CEP) slip of cavity soliton (CS) and pump phase detuning is derived analytically and numerically. To preserve the stability of CS, CEP slip always equals to the pump phase detuning. When CEP slip fails to follow the pump phase detuning, CS becomes unstable. The locking between CEP slip and pump phase detuning results in a scaling law for CS.

قيم البحث

اقرأ أيضاً

We propose a hybrid soliton-based system consisting of a centrosymmetric photorefractive crystal, supporting photorefractive solitons, coupled to a vertical cavity surface emitting laser, supporting multistable cavity solitons. The composite nature o f the system, which couples a propagative/conservative field dynamics to a stationary/dissipative one, allows to observe a more general and unified system phenomenology and to conceive novel photonic functionalities. The potential of the proposed hybrid system becomes clear when investigating the generation and control of cavity solitons by propagating a plane wave through electro-activated solitonic waveguides in the crystal. By changing the electro-activation voltage of the crystal, we prove that cavity solitons can be turned on and shifted with controlled velocity across the device section. The scheme can be exploited for applications to optical information encoding and processing.
Controlling the carrier envelope phase (CEP) in mode-locked lasers over practically long timescales is crucial for real-world applications in ultrafast optics and precision metrology. We present a hybrid solution that combines a feed-forward techniqu e to stabilize the phase offset in fast timescales and a feedback technique that addresses slowly varying sources of interference and locking bandwidth limitations associated with gain media with long upper-state lifetimes. We experimentally realize the hybrid stabilization system in an Er:Yb:glass mode-locked laser and demonstrate 75 hours of stabilization with integrated phase noise of 14 mrad (1 Hz to 3 MHz), corresponding to around 11 as of carrier to envelope jitter. Additionally, we examine the impact of environmental factors, such as humidity and pressure, on the long-term stability and performance of the system.
The ability to measure and control the carrier envelope phase (CEP) of few-cycle laser pulses is of paramount importance for both frequency metrology and attosecond science. Here, we present a phase meter relying on the CEP-dependent photocurrents in duced by circularly polarized few-cycle pulses focused between electrodes in ambient air. The new device facilitates compact single-shot, CEP measurements under ambient conditions and promises CEP tagging at repetition rates orders of magnitude higher than most conventional CEP detection schemes as well as straightforward implementation at longer wavelengths.
High-brightness sources of coherent and few-cycle-duration light waveforms with spectral coverage from the UV to the THz would offer unprecedented versatility and opportunities for a spectacular range of applications from bio-chemical sensing, to tim e-resolved and nonlinear spectroscopy, to attosecond light-wave electronics. Combinations of various sources with frequency conversion and supercontinuum generation can provide relatively large spectral coverage, but many applications require much broader spectral range and low-jitter synchronization for time-domain measurements. Here, we present a carrier-envelope-phase stable light source, seeded by a mid-IR frequency comb, with simultaneous spectral coverage across 7 optical octaves, from the UV (340 nm) into the THz (40,000 nm). Combining soliton self-compression and dispersive wave generation in an anti-resonant-reflection photonic crystal fibre with intra-pulse difference frequency generation in BaGa2GeSe6, the spectral brightness is 2-5 orders of magnitude above synchrotron sources. This enables high-dynamic-range spectroscopies and provides enticing prospects for attosecond physics and material sciences.
Temporal cavity solitons (CSs) are persisting pulses of light that can manifest themselves in continuously driven passive resonators, such as macroscopic fiber ring cavities and monolithic microresonators. Experiments so far have demonstrated two tec hniques for their excitation, yet both possess drawbacks in the form of system complexity or lack of control over soliton positioning. Here we experimentally demonstrate a new CS writing scheme that alleviates these deficiencies. Specifically, we show that temporal CSs can be excited at arbitrary positions through direct phase modulation of the cavity driving field, and that this technique also allows existing CSs to be selectively erased. Our results constitute the first experimental demonstration of temporal cavity soliton excitation via direct phase modulation, as well as their selective erasure (by any means). These advances reduce the complexity of CS excitation and could lead to controlled pulse generation in monolithic microresonators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا