ترغب بنشر مسار تعليمي؟ اضغط هنا

The ALFA ZOA Deep Survey: First Results

186   0   0.0 ( 0 )
 نشر من قبل R. F. Minchin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Arecibo L-Band Feed Array Zone of Avoidance (ALFA ZOA) Deep Survey is the deepest and most sensitive blind Hi survey undertaken in the ZOA. ALFA ZOA Deep will cover about 300 square degrees of sky behind the Galactic plane in both the inner (30 deg < l < 75 deg; b < |2 deg|) and outer (175 deg < l < 207 deg; -2 deg < b < +1 deg) Galaxy, using the Arecibo Radio Telescope. First results from the survey have found 61 galaxies within a 15 square degree area centered on l = 192 deg and b = -2 deg. The survey reached its expected sensitivity of rms = 1 mJy at 9 km/s channel resolution, and is shown to be complete above integrated flux, F_HI = 0.5 Jy km/s. The positional accuracy of the survey is 28 arcsec and detections are found out to a recessional velocity of nearly 19,000 km/s. The survey confirms the extent of the Orion and Abell 539 clusters behind the plane of the Milky Way and discovers expansive voids, at 10,000 km/s and 18,000 km/s. 26 detections (43%) have a counterpart in the literature, but only two of these have known redshift. Counterparts are 20% less common beyond v_hel = 10,000 km/s and 33% less common at extinctions higher than AB = 3.5 mag. ALFA ZOA Deep survey is able to probe large scale structure beyond redshifts that even the most modern wide-angle surveys have been able to detect in the Zone of Avoidance at any wavelength.



قيم البحث

اقرأ أيضاً

The XXL survey currently covers two 25 sq. deg. patches with XMM observations of ~10ks. We summarise the scientific results associated with the first release of the XXL data set, that occurred mid 2016. We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray (z<2) cluster, (z<4) AGN and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-$lambda$ observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the z>1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions.
We present constraints on the abundance of carbon-monoxide in the early Universe from the CO Power Spectrum Survey (COPSS). We utilize a data set collected between 2005 and 2008 using the Sunyaev-Zeldovich Array (SZA), which were previously used to m easure arcminute-scale fluctuations of the CMB. This data set features observations of 44 fields, covering an effective area of 1.7 square degrees, over a frequency range of 27 to 35 GHz. Using the technique of intensity mapping, we are able to probe the CO(1-0) transition, with sensitivity to spatial modes between $k=0.5{-}2 h,textrm{Mpc}^{-1}$ over a range in redshift of $z=2.3{-}3.3$, spanning a comoving volume of $3.6times10^{6} h^{-3},textrm{Mpc}^{3}$. We demonstrate our ability to mitigate foregrounds, and present estimates of the impact of continuum sources on our measurement. We constrain the CO power spectrum to $P_{textrm{CO}}<2.6times10^{4} mutextrm{K}^{2} (h^{-1},textrm{Mpc})^{3}$, or $Delta^{2}_{textrm{CO}}(k! = ! 1 h,textrm{Mpc}^{-1})<1.3 times10^{3} mutextrm{K}^{2}$, at $95%$ confidence. This limit resides near optimistic predictions for the CO power spectrum. Under the assumption that CO emission is proportional to halo mass during bursts of active star formation, this corresponds to a limit on the ratio of $textrm{CO}(1{-}0)$ luminosity to host halo mass of $A_{textrm{CO}}<1.2times10^{-5} L_{odot} M_{odot}^{-1}$. Further assuming a Milky Way-like conversion factor between CO luminosity and molecular gas mass ($alpha_{textrm{CO}}=4.3 M_{odot} (textrm{K} textrm{km} textrm{s}^{-1} textrm{pc}^{-2})^{-1}$), we constrain the global density of molecular gas to $rho_{zsim3}(M_{textrm{H}_{2}})leq 2.8 times10^{8} M_{odot} textrm{Mpc}^{-3}$.
Radio-emitting jets might be one of the main ingredients shaping the evolution of massive galaxies in the Universe since early cosmic times. However, identifying early radio active galactic nuclei (AGN) and confirming this scenario has been hard to a ccomplish, with studies of samples of radio AGN hosts at z>2 becoming routinely possible only recently. With the above in mind, we have carried out a survey with the Atacama Compact Array (ACA, or Morita Array) at 1.3 mm (rms=0.15 mJy) of 36 high-redshift radio AGN candidates found within 3.9deg2 in the ELAIS-S1 field. The work presented here describes the survey and showcases a preliminary set of results. The selection of the sample was based on three criteria making use of infrared (IR) and radio fluxes only. The criterion providing the highest selection rate of high-redshift sources (86% at z>0.8) is one combining an IR colour cut and radio flux cut (S(5.8um)/S(3.6um)>1.3 and S(1.4GHz)>1mJy). Among the sample of 36 sources, 16 show a millimetre (mm) detection. In eight of these cases, the emission has a non-thermal origin. A zsp=1.58 object, with a mm detection of non-thermal origin, shows a clear spatial offset between the jet-dominated mm continuum emission and that of the hosts molecular gas, as traced by serendipitously detected CO(5-4) emission. Among the objects with serendipitous line detections there is a source with a narrow jet-like region, as revealed by CS(6-5) emission stretching 20kpc out of the host galaxy.
OzDES is a five-year, 100-night, spectroscopic survey on the Anglo-Australian Telescope, whose primary aim is to measure redshifts of approximately 2,500 Type Ia supernovae host galaxies over the redshift range 0.1 < z < 1.2, and derive reverberation -mapped black hole masses for approximately 500 active galactic nuclei and quasars over 0.3 < z < 4.5. This treasure trove of data forms a major part of the spectroscopic follow-up for the Dark Energy Survey for which we are also targeting cluster galaxies, radio galaxies, strong lenses, and unidentified transients, as well as measuring luminous red galaxies and emission line galaxies to help calibrate photometric redshifts. Here we present an overview of the OzDES program and our first-year results. Between Dec 2012 and Dec 2013, we observed over 10,000 objects and measured more than 6,000 redshifts. Our strategy of retargeting faint objects across many observing runs has allowed us to measure redshifts for galaxies as faint as m_r=25 mag. We outline our target selection and observing strategy, quantify the redshift success rate for different types of targets, and discuss the implications for our main science goals. Finally, we highlight a few interesting objects as examples of the fortuitous yet not totally unexpected discoveries that can come from such a large spectroscopic survey.
The low-frequency polarisation properties of radio sources are poorly studied, particularly in statistical samples. However, the new generation of low-frequency telescopes, such as the Murchison Widefield Array (MWA; the precursor for the low-frequen cy component of the Square Kilometre Array) offers an opportunity to probe the physics of radio sources at very low radio frequencies. In this paper, we present a catalogue of linearly-polarised sources detected at 216 MHz, using data from the Galactic and Extragalactic All-sky MWA (GLEAM) survey. Our catalogue covers the Declination range $-17^{circ}$ to $-37^{circ}$ and 24 hours in Right Ascension, at a resolution of around 3 arcminutes. We detect 81 sources (including both a known pulsar and new pulsar candidate) with linearly-polarised flux densities in excess of 18 mJy across a survey area of approximately 6400 square degrees, corresponding to a surface density of 1 source per 79 square degrees. The level of Faraday rotation measured for our sources is broadly consistent with those recovered at higher frequencies, with typically more than an order of magnitude improvement in the uncertainty compared to higher-frequency measurements. However, our catalogue is likely incomplete at low Faraday rotation measures, due to our practice of excluding sources in the region where instrumental leakage appears. The majority of sources exhibit significant depolarisation compared to higher frequencies; however, a small sub-sample repolarise at 216 MHz. We also discuss the polarisation properties of four nearby, large-angular-scale radio galaxies, with a particular focus on the giant radio galaxy ESO 422$-$G028, in order to explain the striking differences in polarised morphology between 216 MHz and 1.4 GHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا