ﻻ يوجد ملخص باللغة العربية
We are motivated by the recently reported dynamical evidence of stars with short orbital periods moving around the center of the Milky Way and the corresponding hypothesis about the existence of a supermassive black hole hosted at its center. In this paper we show how the mass and rotation parameters of a Kerr black hole (assuming that the putative supermassive black hole is of this type), as well as the distance that separates the black hole from the Earth, can be estimated in a relativistic way in terms of i) the red and blue shifts of photons that are emitted by geodesic massive particles (stars and galactic gas) and travel along null geodesics towards a distant observer, and ii) the radius of these star/gas orbits. As a concrete example and as a first step towards a full relativistic analysis of the above mentioned star orbits around the center of our galaxy, we consider stable equatorial circular orbits of stars and express their corresponding red/blue shifts in terms of the metric parameters (mass and angular momentum per unit mass) and the orbital radii of both the emitter star (and/or galactic gas) and the distant observer. In principle, these expressions allow one to statistically estimate the mass and rotation parameters of the Kerr black hole, and the radius of our orbit, through a Bayesian fitting, i.e., with the aid of observational data: the red/blue shifts measured at certain points of stars orbits and their radii, with their respective errors, a task that we hope to perform in the near future. We also point to several astrophysical phenomena, like accretion discs of rotating black holes, binary systems and active galactic nuclei, among others, to which this formalism can be applied.
The mass parameters of compact objects such as Boson Stars, Schwarzschild, Reissner Nordstrom and Kerr black holes are computed in terms of the measurable redshift-blueshift (zred, zblue) of photons emitted by particles moving along circular geodesic
The mass parameter of dilaton space-times is obtained as a function of the redshift-blueshift (zred, zblue) of photons emitted by particles orbiting in circular motion around these objects and their corresponding radii. Particularly, we work with the
Here we examine the circular motion of test particles and photons in the spacetime geometry of charged black hole surrounded by quintessence and clouds of strings for the equation of state parameter $omega_q=-2/3$. We observe that there exist stable
We derive closed formulas for the mass and spin parameters of a Kerr black hole in terms of a minimal quantity of observational data: the red-/blue-shifts of photons emitted by massive particles (stars) moving on geodesics around the black hole and t
Binary black hole may form near a supermassive black hole. The background black hole (BH) will affect the gravitational wave (GW) generated by the binary black hole. It is well known that the Penrose process may provide extra energy due to the ergosp