ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterisation of the L-mode Scrape Off Layer in MAST: decay lengths

290   0   0.0 ( 0 )
 نشر من قبل Fulvio Militello
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work presents a detailed characterisation of the MAST Scrape Off Layer in L-mode. Scans in line averaged density, plasma current and toroidal magnetic field were performed. A comprehensive and integrated study of the SOL was allowed by the use of a wide range of diagnostics. In agreement with previous results, an increase of the line averaged density induced a broadening of the midplane density profile.



قيم البحث

اقرأ أيضاً

134 - M. Giacomin , A. Stagni , P. Ricci 2021
Theory-based scaling laws of the near and far scrape-off layer (SOL) widths are analytically derived for L-mode diverted tokamak discharges by using a two-fluid model. The near SOL pressure and density decay lengths are obtained by leveraging a balan ce among the power source, perpendicular turbulent transport across the separatrix, and parallel losses at the vessel wall, while the far SOL pressure and density decay lengths are derived by using a model of intermittent transport mediated by filaments. The analytical estimates of the pressure decay length in the near SOL is then compared to the results of three-dimensional, flux-driven, global, two-fluid turbulence simulations of L-mode diverted tokamak plasmas, and validated against experimental measurements taken from an experimental multi-machine database of divertor heat flux profiles, showing in both cases a very good agreement. Analogously, the theoretical scaling law for the pressure decay length in the far SOL is compared to simulation results and to experimental measurements in TCV L-mode discharges, pointing out the need of a large multi-machine database for the far SOL decay lengths.
Simulations using the fully kinetic neoclassical code XGCa were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total-f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Previously presented XGCa results showed several noteworthy features, including large variations of ion density and pressure along field lines in the SOL, experimentally relevant levels of SOL parallel ion flow (Mach number~0.5), skewed ion distributions near the sheath entrance leading to subsonic flow there, and elevated sheath potentials [R.M. Churchill, Nucl. Mater. & Energy, submitted]. In this paper, we explore in detail the question of pressure balance in the SOL, as it was observed in the simulation that there was a large deviation from a simple total pressure balance (the sum of ion and electron static pressure plus ion inertia). It will be shown that both the contributions from the ion viscosity (driven by ion temperature anisotropy) and neutral source terms can be substantial, and should be retained in the parallel momentum equation in the SOL, but still falls short of accounting for the observed fluid pressure imbalance in the XGCa simulation results.
In future nuclear fusion reactors high heat load events, such as edge-localised modes (ELMs), can potentially damage divertor materials and release impurities into the main plasma, limiting plasma performance. The most difficult to handle are type I ELMs since they carry the largest fraction of energy from the plasma and therefore deposit the largest heat flux at the target and on first wall materials. Knowing the temperature of the ions released from ELM events is important since it determines the potential sputtering they would cause from plasma facing materials. To make measurements of Ti by retarding field energy analyser (RFEA) during type I ELMs a new operational technique has been used to allow faster measurements to be made; this is called the fast swept technique (FST).
In this work we carry out quantitative measurements of particle and heat transport associated to SOL filaments in a tokamak, and relate density shoulder formation to the advection of energy in the far SOL. For the first time, this attempt includes di rect measurements of ion and electron temperatures for background and filaments. With this aim, we combine data from a number of equivalent L-mode discharges from the ASDEX Upgrade tokamak in which different probe heads were installed on the midplane manipulator. This approach is validated by a comparison with independent diagnostics. Results indicate an increase of heat transport associated to filaments after the shoulder formation. Several centimeters into the SOL, filaments are still found to carry a substantial fraction (up to one fifth) of the power ejected at the separatrix.
A four-dimensional plasma model able to describe the scrape-off layer region of tokamak devices at arbitrary collisionality is derived in the drift-reduced limit. The basis of the model is provided by a drift-kinetic equation that retains the full no n-linear Coulomb collision operator and describes arbitrarily far from equilibrium distribution functions. By expanding the dependence of distribution function over the perpendicular velocity in a Laguerre polynomial basis and integrating over the perpendicular velocity, a set of four-dimensional moment equations for the expansion coefficients of the distribution function is obtained. The Coulomb collision operator, as well as Poissons equation, are evaluated explicitly in terms of perpendicular velocity moments of the distribution function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا