ترغب بنشر مسار تعليمي؟ اضغط هنا

Swift discoveries of new populations of extremely long duration high energy transient

35   0   0.0 ( 0 )
 نشر من قبل Andrew Levan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.J. Levan




اسأل ChatGPT حول البحث

Recent observations with Swift have begun to uncover $gamma$-ray transients whose total energies are comparable to those of gamma-ray bursts (GRB), but have a duration an order of magnitude or more longer than the bulk of the GRB population. Some are suggested to form a new population of ultra-long GRBs, with a mean duration around $10^4$s, while a further population with $gamma-$ray durations $>10^5$ s may represent manifestations of relativistic outflows from stars shredded around massive black holes in tidal disruption flares (TDFs). Here I review the observations of these new classes of events, discuss progress towards identifying their progenitors and suggest how new observations may both hone our understanding of the outbursts, and allow them to be used as probes, that offer both complementary and additional tools to GRBs.

قيم البحث

اقرأ أيضاً

86 - I. Horvath , B. G. Toth 2016
Decades ago two classes of gamma-ray bursts were identified and delineated as having durations shorter and longer than about 2 s. Subsequently indications also supported the existence of a third class. Using maximum likelihood estimation we analyze t he duration distribution of 888 Swift BAT bursts observed before October 2015. Fitting three log-normal functions to the duration distribution of the bursts provides a better fit than two log-normal distributions, with 99.9999% significance. Similarly to earlier results, we found that a fourth component is not needed. The relative frequencies of the distribution of the groups are 8% for short, 35% for intermediate and 57% for long bursts which correspond to our previous results. We analyse the redshift distribution for the 269 GRBs of the 888 GRBs with known redshift. We find no evidence for the previously suggested difference between the long and intermediate GRBs redshift distribution. The observed redshift distribution of the 20 short GRBs differs with high significance from the distributions of the other groups.
We present Clusterrank, a new algorithm for identifying dispersed astrophysical pulses. Such pulses are commonly detected from Galactic pulsars and rotating radio transients (RRATs), which are neutron stars with sporadic radio emission. More recently , isolated, highly dispersed pulses dubbed fast radio bursts (FRBs) have been identified as the potential signature of an extragalactic cataclysmic radio source distinct from pulsars and RRATs. Clusterrank helped us discover 14 pulsars and 8 RRATs in data from the Arecibo 327 MHz Drift Pulsar Survey (AO327). The new RRATs have DMs in the range $23.5 - 86.6$ pc cm$^{-3}$ and periods in the range $0.172 - 3.901$ s. The new pulsars have DMs in the range $23.6 - 133.3$ pc cm$^{-3}$ and periods in the range $1.249 - 5.012$ s, and include two nullers and a mode-switching object. We estimate an upper limit on the all-sky FRB rate of $10^5$ day$^{-1}$ for bursts with a width of 10 ms and flux density $gtrsim 83$ mJy. The DMs of all new discoveries are consistent with a Galactic origin. In comparing statistics of the new RRATs with sources from the RRATalog, we find that both sets are drawn from the same period distribution. In contrast, we find that the period distribution of the new pulsars is different from the period distributions of canonical pulsars in the ATNF catalog or pulsars found in AO327 data by a periodicity search. This indicates that Clusterrank is a powerful complement to periodicity searches and uncovers a subset of the pulsar population that has so far been underrepresented in survey results and therefore in Galactic pulsar population models.
As the sensitivity and observing time of gravitational-wave detectors increase, a more diverse range of signals is expected to be observed from a variety of sources. Especially, long-lived gravitational-wave transients have received interest in the l ast decade. Because most of long-duration signals are poorly modeled, detection must rely on generic search algorithms, which make few or no assumption on the nature of the signal. However, the computational cost of those searches remains a limiting factor, which leads to sub-optimal sensitivity. Several detection algorithms have been developed to cope with this issue. In this paper, we present a new data analysis pipeline to search for un-modeled long-lived transient gravitational-wave signals with duration between 10 and 1000 s, based on an excess cross-power statistic in a network of detectors. The pipeline implements several new features that are intended to reduce computational cost and increase detection sensitivity for a wide range of signal morphologies. The method is generalized to a network of an arbitrary number of detectors and aims to provide a stable interface for further improvements. Comparisons with a previous implementation of a similar method on simulated and real gravitational-wave data show an overall increase in detection efficiency depending on the signal morphology, and a computing time reduced by at least a factor 10.
The Fermi Large Area Telescope (LAT) observed two bright X-class solar flares on 2012 March 7, and detected gamma-rays up to 4 GeV. We detected gamma-rays both during the impulsive and temporally-extended emission phases, with emission above 100 MeV lasting for approximately 20 hours. Accurate localization of the gamma-ray production site(s) coincide with the solar active region from which X-ray emissions associated with these flares originated. Our analysis of the >100 MeV gamma-ray emission shows a relatively rapid monotonic decrease in flux during the first hour of the impulsive phase, and a much slower, almost monotonic decrease in flux for the next 20 hours. The spectra can be adequately described by a power law with a high energy exponential cutoff, or as resulting from the decay of neutral pions produced by accelerated protons and ions with an isotropic power-law energy distribution. The required proton spectrum has a number index ~3, with minor variations during the impulsive phase, while during the temporally extended phase the spectrum softens monotonically, starting with index ~4. The >30 MeV proton flux and spectra observed near the Earth by the GOES satellites also show a monotonic flux decrease and spectral softening during the extended phase, but with a harder spectrum, with index ~3. Based on the Fermi-LAT and GOES observations of the flux and spectral evolution of these bright flares, we explore the relative merits of prompt and continuous acceleration scenarios, hadronic and leptonic emission processes, and acceleration at the solar corona by the fast Coronal Mass Ejections (CME) as explanations for the observations. We conclude that the most likely scenario is continuous acceleration of protons in the solar corona which penetrate the lower solar atmosphere and produce pions that decay into gamma-rays.
The prompt emission of Gamma Ray Bursts (GRBs) is usually well described by the Band function: two power-laws joined smoothly at a given break energy. In addition to the Band component, a few bursts (GRB941017, GRB090510, GRB090902B and GRB090926A) s how clear evidence for a distinct high-energy spectral component, which in some cases evolves independently from the prompt keV component and is well described by a power-law (PL), sometimes with a cut-off energy; this component is found to have long duration, even longer than the burst itself for all the four bursts. Here we report the observation of an anomalous short duration high energy component in GRB980923. GRB980923 is one of the brightest Gamma-Ray Bursts (GRBs) observed by BATSE. Its light curve is characterized by a rapid variability phase lasting ~ 40 s, followed by a smooth emission tail lasting ~ 400 s. A detailed joint analysis of BATSE (LAD and SD) and EGRET TASC data of GRB980923 reveles the presence of an anomalous keV to MeV component in the spectrum that evolves independently from the prompt keV one. This component is well described by a PL with a spectral index of -1.44 and lasts only ~ 2 s; it represents one of the three clearly separated spectral components identified in GRB980923, the other two being the keV prompt emission, well described by the Band function and the tail, well fit by a Smoothly Broken Power Law (SBPL).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا