ﻻ يوجد ملخص باللغة العربية
We present a high spatial resolution optical and infrared study of the circumnuclear region in Arp 220, a late-stage galaxy merger. Narrowband imaging using HST/WFC3 has resolved the previously observed peak in H$alpha$+[NII] emission into a bubble-shaped feature. This feature measures 1.6 in diameter, or 600 pc, and is only 1 northwest of the western nucleus. The bubble is aligned with the western nucleus and the large-scale outflow axis seen in X-rays. We explore several possibilities for the bubble origin, including a jet or outflow from a hidden active galactic nucleus (AGN), outflows from high levels of star formation within the few hundred pc nuclear gas disk, or an ultraluminous X-ray source. An obscured AGN or high levels of star formation within the inner $sim$100 pc of the nuclei are favored based on the alignment of the bubble and energetics arguments.
We present an imaging and spectral analysis of the nuclear region of the ULIRG merger Arp 220, using deep textit{Chandra}-ACIS observations summing up to (sim 300mbox{ ks}). Narrow-band imaging with sub-pixel resolution of the innermost nuclear regio
We present the first very-long-baseline interferometry (VLBI) detections of Zeeman splitting in another galaxy. We used Arecibo Observatory, the Green Bank Telescope, and the Very Long Baseline Array to perform dual-polarization observations of OH ma
We present the first spatially and spectrally resolved image of the molecular outflow in the western nucleus of Arp,220. The outflow, seen in HCN~(1--0) by ALMA, is compact and collimated, with extension $lesssim$ 120,pc. Bipolar morphology emerges a
We present new images of Arp 220 from the Atacama Large Millimeter/submillimeter Array with the highest combination of frequency (691 GHz) and resolution ($0.36 times 0.20^{primeprime}$) ever obtained for this prototypical ultraluminous infrared gala
We analyze 3 mm emission of the ultraluminous infrared galaxy Arp 220 for spatially-resolved structure and spectral properties of the merger nuclei. ALMA archival data at ~0.05 resolution are used for extensive visibility fitting and deep imaging of