ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimate of the theoretical uncertainty of the cross sections for nucleon knockout in neutral-current neutrino-oxygen interactions

347   0   0.0 ( 0 )
 نشر من قبل Artur Ankowski
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Free nucleons propagating in water are known to produce gamma rays, which form a background to the searches for diffuse supernova neutrinos and sterile neutrinos carried out with Cherenkov detectors. As a consequence, the process of nucleon knockout induced by neutral-current quasielastic interactions of atmospheric (anti)neutrinos with oxygen needs to be under control at the quantitative level in the background simulations of the ongoing and future experiments. In this paper, we provide a quantitative assessment of the uncertainty associated with the theoretical description of the nuclear cross sections, estimating it from the discrepancies between the predictions of different models.

قيم البحث

اقرأ أيضاً

The analysis of the recent neutral-current elastic neutrino and antineutrino-nucleus scattering cross sections measured by the MiniBooNE Collaboration requires relativistic theoretical descriptions also accounting for the role of final-state interact ions. In this work we investigate the sensitivity to final-state interactions and compare the MiniBooNE data with the results obtained in the relativistic Greens function model with different parameterizations for the phenomenological relativistic optical potential.
We have extended our model for charged current neutrino-nucleus interactions to neutral current reactions. For the elementary neutrino-nucleon interaction, we take into account quasielastic scattering, Delta excitation and the excitation of the reson ances in the second resonance region. Our model for the neutrino-nucleus collisions includes in-medium effects such as Fermi motion, Pauli blocking, nuclear binding, and final-state interactions. They are implemented by means of the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) coupled-channel transport model. This allows us to study exclusive channels, namely pion production and nucleon knockout. We find that final-state interactions modify considerably the distributions through rescattering, charge-exchange and absorption. Side-feeding induced by charge-exchange scattering is important in both cases. In the case of pions, there is a strong absorption associated with the in-medium pionless decay modes of the Delta, while nucleon knockout exhibits a considerable enhancement of low energy nucleons due to rescattering. At neutrino energies above 1 GeV, we also obtain that the contribution to nucleon knockout from Delta excitation is comparable to that from quasielastic scattering.
Based on the requirement in the simulation of lepton-nucleus deep inelastic scattering (DIS), we construct a fortran program LDCS 1.0 calculating the differential and total cross sections for the unpolarized charged lepton-unpolarized nucleon and neu trino-unpolarized nucleon neutral current (charged current) DIS at leading order. Any set of the experimentally fitted parton distribution functions could be employed directly. The mass of incident and scattered leptons is taken into account and the boundary conditions calculating the single differential and total cross section are studied. The calculated results well agree with the corresponding experimental data which indicating the LDCS 1.0 program is good. It is also turned out that the effect of tauon mass is not negligible in the GeV energy level.
A formalism based on a relativistic plane wave impulse approximation is developed to investigate the strange-quark content ($g_{A}^{s}$) of the axial-vector form factor of the nucleon via neutrino-nucleus scattering. Nuclear structure effects are inc orporated via an accurately calibrated relativistic mean-field model. The ratio of neutral- to charged-current cross sections is used to examine the sensitivity of this observable to $g_{A}^{s}$. For values of the incident neutrino energy in the range proposed by the FINeSSE collaboration and by adopting a value of $g_{A}^{s}=-0.19$, a 30% enhancement in the ratio is observed relative to the $g_{A}^{s}=0$ result.
82 - Artur M. Ankowski 2017
Martini et al. [Phys. Rev. C 94, 015501 (2016)] recently observed that when the produced-leptons mass plays an important role, the charged-current quasielastic cross section for muon neutrinos can be higher than that for electron neutrinos. Here I ar gue that this effect appears solely in the theoretical descriptions of nuclear effects in which nucleon knockout requires the energy and momentum transfers to lie in a narrow range of the kinematically allowed values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا