ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying single electron charge sensor events using wavelet edge detection

245   0   0.0 ( 0 )
 نشر من قبل Jonathan Prance
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The operation of solid-state qubits often relies on single-shot readout using a nanoelectronic charge sensor, and the detection of events in a noisy sensor signal is crucial for high fidelity readout of such qubits. The most common detection scheme, comparing the signal to a threshold value, is accurate at low noise levels but is not robust to low-frequency noise and signal drift. We describe an alternative method for identifying charge sensor events using wavelet edge detection. The technique is convenient to use and we show that, with realistic signals and a single tunable parameter, wavelet detection can outperform thresholding and is significantly more tolerant to 1/f and low-frequency noise.



قيم البحث

اقرأ أيضاً

We report on charge sensing measurements of a GaAs semiconductor quantum dot device using a radio frequency quantum point contact (rf-QPC). The rf-QPC is fully characterized at 4 K and milli-Kelvin temperatures and found to have a bandwidth exceeding 20 MHz. For single-shot charge sensing we achieve a charge sensitivity of 2x10^-4 e/(sqrt)Hz referred to the neighboring dots charge. The rf-QPC compares favorably with rf-SET electrometers and promises to be an extremely useful tool for characterizing and measuring semiconductor quantum systems on fast timescales.
85 - K. R. Brown , L. Sun , 2006
We present observations of background charge fluctuators near an Al-AlO_x-Al single-electron transistor on an oxidized Si substrate. The transistor design incorporates a heavily doped substrate and top gate, which allow for independent control of the substrate and transistor island potentials. Through controlled charging of the Si/SiO_2 interface we show that the fluctuators cannot reside in the Si layer or in the tunnel barriers. Combined with the large measured signal amplitude, this implies that the defects must be located very near the oxide surface.
We observe individual tunnel events of a single electron between a quantum dot and a reservoir, using a nearby quantum point contact (QPC) as a charge meter. The QPC is capacitively coupled to the dot, and the QPC conductance changes by about 1% if t he number of electrons on the dot changes by one. The QPC is voltage biased and the current is monitored with an IV-convertor at room temperature. We can resolve tunnel events separated by only 8 $mu$s, limited by noise from the IV-convertor. Shot noise in the QPC sets a 25 ns lower bound on the accessible timescales.
We calculate the charge sensitivity of a recently demonstrated device where the Josephson inductance of a single Cooper-pair transistor is measured. We find that the intrinsic limit to detector performance is set by oscillator quantum noise. Sensitiv ity better than $10^{-6}$e$/sqrt{mathrm{Hz}}$ is possible with a high $Q$-value $sim 10^3$, or using a SQUID amplifier. The model is compared to experiment, where charge sensitivity $3 times 10^{-5}$e$/sqrt{mathrm{Hz}}$ and bandwidth 100 MHz are achieved.
We demonstrate real-time detection of self-interfering electrons in a double quantum dot embedded in an Aharonov-Bohm interferometer, with visibility approaching unity. We use a quantum point contact as a charge detector to perform time-resolved meas urements of single-electron tunneling. With increased bias voltage, the quantum point contact exerts a back-action on the interferometer leading to decoherence. We attribute this to emission of radiation from the quantum point contact, which drives non-coherent electronic transitions in the quantum dots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا