ترغب بنشر مسار تعليمي؟ اضغط هنا

Deeply-trapped molecules in self-nanostructured gas-phase material

83   0   0.0 ( 0 )
 نشر من قبل Fetah Benabid
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the advent of atom laser-cooling, trapping or cooling natural molecules has been a long standing and challenging goal. Here, we demonstrate a method for laser-trapping molecules that is radically novel in its configuration, in its underlined physical dynamics and in its outcomes. It is based on self-optically spatially-nanostructured high pressure molecular hydrogen confined in hollow-core photonic-crystal-fibre. An accelerating molecular-lattice is formed by a periodic potential associated with Raman saturation except for a 1-dimentional array of nanometer wide and strongly-localizing sections. In these sections, molecules with a speed of as large as 1800 m/s are trapped, and stimulated Raman scattering in the Lamb-Dicke regime occurs to generate high power forward and backward-Stokes continuous-wave laser with sideband-resolved sub-Doppler emission spectrum. The spectrum exhibits a central line with a sub-recoil linewidth of as low as 14 kHz, more than 5 orders-of-magnitude narrower than in conventional Raman scattering, and sidebands comprising Mollow triplet, molecular motional-sidebands and four-wave-mixing.



قيم البحث

اقرأ أيضاً

We investigate phase separation of Bose-Einstein condensates (BECs) of two-component atoms and one-component molecules with a homonuclear Feshbach resonance. We develop a full model for dilute atomic and molecular gases including correlation of the F eshbach resonance and all kinds of interparticle interactions, and numerically calculate order parameters of the BECs in spherical harmonic oscillator traps at zero temperature with the Bogoliubovs classical field approximation. As a result, we find out that the Feshbach resonance can induce two types of phase separation. The actual phase structures and density profiles of the trapped gases are predicted in the whole parameter region, from the atom dominant regime to the molecule dominant regime. We focus on the role of the molecules in the phase separation. Especially in the atom dominant regime, the role of the molecules is described through effective interactions derived from our model. Furthermore we show that a perturbative and semi-classical limit of our model reproduces the conventional atomic BEC (single-channel) model.
Gauge invariance was discovered in the development of classical electromagnetism and was required when the latter was formulated in terms of the scalar and vector potentials. It is now considered to be a fundamental principle of nature, stating that different forms of these potentials yield the same physical description: they describe the same electromagnetic field as long as they are related to each other by gauge transformations. Gauge invariance can also be included into the quantum description of matter interacting with an electromagnetic field by assuming that the wave function transforms under a given local unitary transformation. The result of this procedure is a quantum theory describing the coupling of electrons, nuclei and photons. Therefore, it is a very important concept: it is used in almost every fields of physics and it has been generalized to describe electroweak and strong interactions in the standard model of particles. A review of quantum mechanical gauge invariance and general unitary transformations is presented for atoms and molecules in interaction with intense short laser pulses, spanning the perturbative to highly nonlinear nonperturbative interaction regimes. Various unitary transformations for single spinless particle Time Dependent Schrodinger Equations, TDSE, are shown to correspond to different time-dependent Hamiltonians and wave functions. Accuracy of approximation methods involved in solutions of TDSEs such as perturbation theory and popular numerical methods depend on gauge or representation choices which can be more convenient due to faster convergence criteria. We focus on three main representations: length and velocity gauges, in addition to the acceleration form which is not a gauge, to describe perturbative and nonperturbative radiative interactions. Numerical schemes for solving TDSEs in different representations are also discussed.
The control of large-scale quantum information processors based on arrays of trapped ions requires a means to route and focus multiple laser beams to each of many trapping sites in parallel. Here, we combine arrays of fibres, 3D laser-written wavegui des and diffractive microlenses to demonstrate the principle of a micro-optic interconnect suited to this task. The module is intended for use with an ion microtrap of 3D electrode geometry. It guides ten independent laser beams with unique trajectories to illuminate a pair of spatially separated target points. Three blue and two infrared beams converge to overlap precisely at each desired position. Typical relative crosstalk intensities in the blue are $3.6 times 10^{-3}$ and the average insertion loss across all channels is $8~$dB. The module occupies $sim 10^4$ times less volume than a conventional bulk-optic equivalent and is suited to different ion species.
A three level ladder system is analyzed and the coherence of initially electric-dipole forbidden transition is calculated. Due to the presence of two laser fields the initially dipole forbidden transition becomes dynamically permitted due to ac Stark effect. It is shown that such transitions exhibit quantum-interference-related phenomena, such as electromagnetically induced transparency, gain without inversion and enhanced refractive index. Gain and dispersion characteristics of such transitions strongly depend upon the relative phase between the driving and the probe fields. Unlike allowed transitions, gain/absorption behavior of ac-Stark allowed transitions exhibit antisymmetric feature on the Rabi sidebands. It is found that absorption/gain spectra possess extremely narrow sub-natural resonances on these ac Stark allowed forbidden transitions. An interesting finding is simultaneous existence of gain and negative dispersion at Autler-Townes transition which may lead to both reduction of the group velocity and amplification of light.
Nanophotonic technologies offer great promise for ultra-low power optical signal processing, but relatively few nonlinear-optical phenomena have yet been explored as bases for robust digital modulation/switching~cite{Yang07,Fara08,Liu10,Noza10}. Here we show that a single two-level system (TLS) coupled strongly to an optical resonator can impart binary phase modulation on a saturating probe beam. Our experiment relies on spontaneous emission to induce occasional transitions between positive and negative phase shifts---with each such edge corresponding to a dissipated energy of just one photon ($approx 0.23$ aJ)---but an optical control beam could be used to trigger additional phase switching at signalling rates above this background. Although our ability to demonstrate controlled switching in our atom-based experiment is limited, we discuss prospects for exploiting analogous physics in a nanophotonic device incorporating a quantum dot as the TLS to realize deterministic binary phase modulation with control power in the aJ/edge regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا