ترغب بنشر مسار تعليمي؟ اضغط هنا

One-Third Magnetization Plateau with a Preceding Novel Phase in Volborthite

57   0   0.0 ( 0 )
 نشر من قبل Hajime Ishikawa
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have synthesized high-quality single crystals of volborthite, a seemingly distorted kagome antiferromagnet, and carried out high-field magnetization measurements up to 74 T and 51V NMR measurements up to 30 T. An extremely wide 1/3 magnetization plateau appears above 28 T and continues over 74 T at 1.4 K, which has not been observed in previous study using polycrystalline samples. NMR spectra reveal an incommensurate order (most likely a spin-density wave order) below 22 T and a simple spin structure in the plateau phase. Moreover, a novel intermediate phase is found between 23 and 26 T, where the magnetization varies linearly with magnetic field and the NMR spectra indicate an inhomogeneous distribution of the internal magnetic field. This sequence of phases in volborthite bear a striking similarity to those of frustrated spin chains with a ferromagnetic nearest-neighbor coupling J1 competing with an antiferromagnetic next-nearest-neighbor coupling J2.

قيم البحث

اقرأ أيضاً

138 - Y. Kamiya , L. Ge , Tao Hong 2017
Magnetization plateaus in quantum magnets---where bosonic quasiparticles crystallize into emergent spin superlattices---are spectacular yet simple examples of collective quantum phenomena escaping classical description. While magnetization plateaus h ave been observed in a number of spin-1/2 antiferromagnets, the description of their magnetic excitations remains an open theoretical and experimental challenge. Here, we investigate the dynamical properties of the triangular-lattice spin-1/2 antiferromagnet Ba$_3$CoSb$_2$O$_9$ in its one-third magnetization plateau phase using a combination of nonlinear spin-wave theory and neutron scattering measurements. The agreement between our theoretical treatment and the experimental data demonstrates that magnons behave semiclassically in the plateau in spite of the purely quantum origin of the underlying magnetic structure. This allows for a quantitative determination of Ba$_3$CoSb$_2$O$_9$ exchange parameters. We discuss the implication of our results to the deviations from semiclassical behavior observed in zero-field spin dynamics of the same material and conclude they must have an intrinsic origin.
94 - H. Tanaka , T. Ono , H. A. Katori 2002
The crystal structure of Cs$_2$CuBr$_4$ is the same as that of Cs$_2$CuCl$_4$, which has been characterized as a spin-1/2 quasi-two-dimensional frustrated system. The magnetic properties of Cs$_2$CuBr$_4$ were investigated by magnetization and specif ic heat measurements. The phase transition at zero magnetic field was detected at $T_{rm N}=1.4$ K. It was observed that the magnetization curve has a plateau at about one-third of the saturation magnetization for magnetic field $H$ parallel to the $b$- and $c$-axes, while no plateau was observed for $Hparallel a$. The field-induced phase transition to the plateau state appears to be of the first order. The mechanism leading to the magnetization plateau is discussed.
We have investigated spin-wave excitations in a magnetic-field-induced 1/5-magnetization plateau phase in a triangular lattice antiferromagnet CuFeO2 (CFO), by means of inelastic neutron scattering measurements under applied magnetic fields of up to 13.4 T. Comparing the observed spectra with the calculations in which spin-lattice coupling effects for the nearest neighbor exchange interactions are taken into account, we have determined the Hamiltonian parameters in the field-induced 1/5- plateau phase, which directly show that CFO exhibits a bond order associated with the magnetic structure in this phase.
536 - V.N.Glazkov 2018
We discuss magnetization curves of a toy-model trigonal and tetrahedral clusters. Nonlinearity of magnetization with local minimum of differential susceptibility resembling known magnetization plateaus of triangular-lattice and pyrochlore lattice ant iferromagnets is observed at intermediate temperature range $ Jlesssim TlesssimTheta$ (here $J$ is the exchange coupling constant and $Theta$ is a Curie-Weiss temperature). This behavior is due to increased statistical weight of the states with intermediate total spin of the cluster, which is related to the `order-by-disorder mechanism of plateau stabilization of a macroscopic frustrated magnet.
To capture the high-field magnetization process of herbertsmithite (ZnCu3(OH)6Cl2), Faraday rotation (FR) measurements were carried out on a single crystal in magnetic fields of up to 190 T. The magnetization data evaluated from the FR angle exhibite d a saturation behavior above 150 T at low temperatures, which was attributed to the 1/3 magnetization plateau. The overall behavior of the magnetization process was reproduced by theoretical models based on the nearest-neighbor Heisenberg model. This suggests that herbertsmithite is a proximate kagome antiferromagnet hosting an ideal quantum spin liquid in the ground state. A distinguishing feature is the superlinear magnetization increase, which is in contrast to the Brillouin function-type increase observed by conventional magnetization measurements and indicates a reduced contribution from free spins located at the Zn sites to the FR signal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا