ترغب بنشر مسار تعليمي؟ اضغط هنا

Astrometric positions for 18 irregular satellites of giant planets from 23 years of observations

96   0   0.0 ( 0 )
 نشر من قبل Altair Gomes Jr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The irregular satellites of the giant planets are believed to have been captured during the evolution of the solar system. Knowing their physical parameters, such as size, density, and albedo is important for constraining where they came from and how they were captured. The best way to obtain these parameters are observations in situ by spacecrafts or from stellar occultations by the objects. Both techniques demand that the orbits are well known. We aimed to obtain good astrometric positions of irregular satellites to improve their orbits and ephemeris. We identified and reduced observations of several irregular satellites from three databases containing more than 8000 images obtained between 1992 and 2014 at three sites (Observatorio do Pico dos Dias, Observatoire de Haute-Provence, and European Southern Observatory - La Silla). We used the software PRAIA (Platform for Reduction of Astronomical Images Automatically) to make the astrometric reduction of the CCD frames. The UCAC4 catalog represented the International Celestial Reference System in the reductions. Identification of the satellites in the frames was done through their ephemerides as determined from the SPICE/NAIF kernels. Some procedures were followed to overcome missing or incomplete information (coordinates, date), mostly for the older images. We managed to obtain more than 6000 positions for 18 irregular satellites: 12 of Jupiter, 4 of Saturn, 1 of Uranus (Sycorax), and 1 of Neptune (Nereid). For some satellites the number of obtained positions is more than 50% of what was used in earlier orbital numerical integrations. Comparison of our positions with recent JPL ephemeris suggests there are systematic errors in the orbits for some of the irregular satellites. The most evident case was an error in the inclination of Carme.



قيم البحث

اقرأ أيضاً

We present thermal model fits for 11 Jovian and 3 Saturnian irregular satellites based on measurements from the WISE/NEOWISE dataset. Our fits confirm spacecraft-measured diameters for the objects with in situ observations (Himalia and Phoebe) and pr ovide diameters and albedo for 12 previously unmeasured objects, 10 Jovian and 2 Saturnian irregular satellites. The best-fit thermal model beaming parameters are comparable to what is observed for other small bodies in the outer Solar System, while the visible, W1, and W2 albedos trace the taxonomic classifications previously established in the literature. Reflectance properties for the irregular satellites measured are similar to the Jovian Trojan and Hilda Populations, implying common origins.
Measuring the orbits of directly-imaged exoplanets requires precise astrometry at the milliarcsec level over long periods of time due to their wide separation to the stars ($gtrsim$10 au) and long orbital period ($gtrsim$20 yr). To reach this challen ging goal, a specific strategy was implemented for the instrument Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), the first dedicated exoplanet imaging instrument at the Very Large Telescope of the European Southern Observatory (ESO). A key part of this strategy relies on the astrometric stability of the instrument over time. We monitored for five years the evolution of the optical distortion, pixel scale, and orientation to the True North of SPHERE images using the near-infrared instrument IRDIS. We show that the instrument calibration achieves a positional stability of $sim$1 mas over 2$$ field of views. We also discuss the SPHERE astrometric strategy, issues encountered in the course of the on-sky operations, and lessons learned for the next generation of exoplanet imaging instruments on the Extremely Large Telescope being built by ESO.
The one-meter telescope-reflector `Saturn (D=1 m, F = 4 m) was partially renovated at the Pulkovo observatory at the end of 2014. The telescope was equipped by CCD camera S2C with 14x14 arcmin field of view and 824 mas per pix scale. The observations of outer Jovian satellites have been performed in a test mode since January 2015. The exposure time of 30 seconds allows us to obtain images of stars up to magnitude 19.5 with the present state of the mirror and the equipment. The observations of outer Jovian satellites have been performed during testing period. These objects are interesting targets because their astrometric observations required to improve ephemeris and dynamic studies. Satellites positions have been determined on the basis of CCD images obtained within 6 nights. Astrometric reduction is performed by linear method using HCRF/UCAC4 and HCRF/URAT1. Internal accuracy of satellites positions has been estimated as 20 - 100 mas. The absolute values of residuals O-C do not exceed 100 mas in most cases. The independent tests have been carried out by the direct comparison with the results of observations of the Jovian satellite Himalia performed simultaneously by the Normal astrograph (the largest difference was 113 mas). This work has been partially supported by RFBR (12-02-00675-a) and the 22 Program of RAS Praesidium.
351 - Michael Shao 2009
Astrometry can detect rocky planets in a broad range of masses and orbital distances and measure their masses and three-dimensional orbital parameters, including eccentricity and inclination, to provide the properties of terrestrial planets. The mass es of both the new planets and the known gas giants can be measured unambiguously, allowing a direct calculation of the gravitational interactions, both past and future. Such dynamical interactions inform theories of the formation and evolution of planetary systems, including Earth-like planets. Astrometry is the only technique technologically ready to detect planets of Earth mass in the habitable zone (HZ) around solar-type stars within 20 pc. These Earth analogs are close enough for follow-up observations to characterize the planets by infrared imaging and spectroscopy with planned future missions such as the James Webb Space Telescope (JWST) and the Terrestrial Planet Finder/Darwin. Employing a demonstrated astrometric precision of 1 microarcsecond and a noise floor under 0.1 micro-arcseconds, SIM Lite can make multiple astrometric measurements of the nearest 60 F-, G-, and K-type stars during a five-year mission. SIM Lite directly tests theories of rocky planet formation and evolution around Sun-like stars and identifies the nearest potentially habitable planets for later spaceborne imaging, e.g., with Terrestrial Planet Finder and Darwin. SIM was endorsed by the two recent Decadal Surveys and it meets the highest-priority goal of the 2008 AAAC Exoplanet Task Force.
The ESPRI project relies on the astrometric capabilities offered by the PRIMA facility of the Very Large Telescope Interferometer for the discovery and study of planetary systems. Our survey consists of obtaining high-precision astrometry for a large sample of stars over several years and to detect their barycentric motions due to orbiting planets. We present the operation principle, the instruments implementation, and the results of a first series of test observations. A comprehensive overview of the instrument infrastructure is given and the observation strategy for dual-field relative astrometry is presented. The differential delay lines, a key component of the PRIMA facility which was delivered by the ESPRI consortium, are described and their performance within the facility is discussed. Observations of bright visual binaries are used to test the observation procedures and to establish the instruments astrometric precision and accuracy. The data reduction strategy for astrometry and the necessary corrections to the raw data are presented. Adaptive optics observations with NACO are used as an independent verification of PRIMA astrometric observations. The PRIMA facility was used to carry out tests of astrometric observations. The astrometric performance in terms of precision is limited by the atmospheric turbulence at a level close to the theoretical expectations and a precision of 30 micro-arcseconds was achieved. In contrast, the astrometric accuracy is insufficient for the goals of the ESPRI project and is currently limited by systematic errors that originate in the part of the interferometer beamtrain which is not monitored by the internal metrology system. Our observations led to the definition of corrective actions required to make the facility ready for carrying out the ESPRI search for extrasolar planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا