ﻻ يوجد ملخص باللغة العربية
Major discrepancies have been noted for some time between fossil ages and molecular divergence dates for a variety of taxa. Recently, systematic trends within avian clades have been uncovered. The trends show that the disparity is much larger for mitochondrial DNA than for nuclear DNA, also that it is larger for crown fossil dates than stem fossil dates. It has been argued that this pattern is largely inconsistent with incompleteness of the fossil record as the principal driver of the disparity. A case is presented that given the expected mutations from a fluctuating background of astrophysical radiation from such sources as supernovae, the rate of molecular clocks is variable and should increase back to a few Ma, before returning to the long-term average rate. This is a possible explanation for the disparity. One test of this hypothesis is to look for an acceleration of molecular clocks 2 to 2.5 Ma due to one or more moderately nearby supernovae known to have happened at that time. Another is to look for reduced disparity in benthic organisms of the deep ocean. In addition, due to the importance of highly penetrating muon irradiation, the disparity should be magnified for megafauna.
We use Fourier analysis and related techniques to investigate the question of periodicities in fossil biodiversity. These techniques are able to identify cycles superimposed on the long-term trends of the Phanerozoic. We review prior results and anal
Medvedev and Melott (2007) have suggested that periodicity in fossil biodiversity may be induced by cosmic rays which vary as the Solar System oscillates normal to the galactic disk. We re-examine the evidence for a 62 million year (Myr) periodicity
Stellar feedback in the form of radiation pressure and magnetically-driven collimated outflows may limit the maximum mass that a star can achieve and affect the star-formation efficiency of massive pre-stellar cores. Here we present a series of 3D ad
The absence of high Eddington ratio, obscured Active Galactic Nuclei (AGN) in local ($zlesssim0.1$) samples of moderate luminosity AGN has generally been explained to result from radiation pressure on the dusty gas governing the level of nuclear ($le
The two classic theories for the existence of sexual replication are that sex purges deleterious mutations from a population, and that sex allows a population to adapt more rapidly to changing environments. These two theories have often been presente