ترغب بنشر مسار تعليمي؟ اضغط هنا

A possible role for stochastic radiation events in the systematic disparity between molecular and fossil dates

57   0   0.0 ( 0 )
 نشر من قبل Adrian Melott
 تاريخ النشر 2015
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English
 تأليف Adrian L. Melott




اسأل ChatGPT حول البحث

Major discrepancies have been noted for some time between fossil ages and molecular divergence dates for a variety of taxa. Recently, systematic trends within avian clades have been uncovered. The trends show that the disparity is much larger for mitochondrial DNA than for nuclear DNA, also that it is larger for crown fossil dates than stem fossil dates. It has been argued that this pattern is largely inconsistent with incompleteness of the fossil record as the principal driver of the disparity. A case is presented that given the expected mutations from a fluctuating background of astrophysical radiation from such sources as supernovae, the rate of molecular clocks is variable and should increase back to a few Ma, before returning to the long-term average rate. This is a possible explanation for the disparity. One test of this hypothesis is to look for an acceleration of molecular clocks 2 to 2.5 Ma due to one or more moderately nearby supernovae known to have happened at that time. Another is to look for reduced disparity in benthic organisms of the deep ocean. In addition, due to the importance of highly penetrating muon irradiation, the disparity should be magnified for megafauna.

قيم البحث

اقرأ أيضاً

We use Fourier analysis and related techniques to investigate the question of periodicities in fossil biodiversity. These techniques are able to identify cycles superimposed on the long-term trends of the Phanerozoic. We review prior results and anal yze data previously reduced and published. Joint time-series analysis of various reductions of the Sepkoski Data, Paleobiology Database, and Fossil Record 2 indicate the same periodicity in biodiversity of marine animals at 62 Myr. We have not found this periodicity in the terrestrial fossil record. We have found that the signal strength decreases with time because of the accumulation of apparently resistant long-lived genera. The existence of a 62-Myr periodicity despite very different treatment of systematic error, particularly sampling-strength biases, in all three major databases strongly argues for its reality in the fossil record.
Medvedev and Melott (2007) have suggested that periodicity in fossil biodiversity may be induced by cosmic rays which vary as the Solar System oscillates normal to the galactic disk. We re-examine the evidence for a 62 million year (Myr) periodicity in biodiversity throughout the Phanerozoic history of animal life reported by Rohde & Mueller (2005), as well as related questions of periodicity in origination and extinction. We find that the signal is robust against variations in methods of analysis, and is based on fluctuations in the Paleozoic and a substantial part of the Mesozoic. Examination of origination and extinction is somewhat ambiguous, with results depending upon procedure. Origination and extinction intensity as defined by RM may be affected by an artifact at 27 Myr in the duration of stratigraphic intervals. Nevertheless, when a procedure free of this artifact is implemented, the 27 Myr periodicity appears in origination, suggesting that the artifact may ultimately be based on a signal in the data. A 62 Myr feature appears in extinction, when this same procedure is used. We conclude that evidence for a periodicity at 62 Myr is robust, and evidence for periodicity at approximately 27 Myr is also present, albeit more ambiguous.
Stellar feedback in the form of radiation pressure and magnetically-driven collimated outflows may limit the maximum mass that a star can achieve and affect the star-formation efficiency of massive pre-stellar cores. Here we present a series of 3D ad aptive mesh refinement radiation-magnetohydrodynamic simulations of the collapse of initially turbulent, massive pre-stellar cores. Our simulations include radiative feedback from both the direct stellar and dust-reprocessed radiation fields, and collimated outflow feedback from the accreting stars. We find that protostellar outflows punches holes in the dusty circumstellar gas along the stars polar directions, thereby increasing the size of optically thin regions through which radiation can escape. Precession of the outflows as the stars spin axis changes due to the turbulent accretion flow further broadens the outflow, and causes more material to be entrained. Additionally, the presence of magnetic fields in the entrained material leads to broader entrained outflows that escape the core. We compare the injected and entrained outflow properties and find that the entrained outflow mass is a factor of $sim$3 larger than the injected mass and the momentum and energy contained in the entrained material are $sim$25% and $sim$5% of the injected momentum and energy, respectively. As a result, we find that, when one includes both outflows and radiation pressure, the former are a much more effective and important feedback mechanism, even for massive stars with significant radiative outputs.
The absence of high Eddington ratio, obscured Active Galactic Nuclei (AGN) in local ($zlesssim0.1$) samples of moderate luminosity AGN has generally been explained to result from radiation pressure on the dusty gas governing the level of nuclear ($le sssim10$pc) obscuration. However, very high accretion rates are routinely reported among obscured quasars at higher luminosities, and may require a different feedback mechanism. We compile constraints on obscuration and Eddington ratio for samples of X-ray, optical, infrared, and submm selected AGN at quasar luminosities. Whereas moderate luminosity, obscured AGN in the local universe have a range of lower Eddington ratios ($f_{rm Edd} sim 0.001-0.1$), the most luminous ($L_{rm bol} gtrsim 10^{46} $erg s$^{-1}$) IR/submm-bright, obscured quasars out to $zsim3$ commonly have very high Eddington ratios ($f_{rm Edd} sim 0.1-1$). This apparent lack of radiation pressure feedback in luminous obscured quasars is likely coupled with AGN timescales, such that a higher fraction of luminous obscured quasars are seen due to the short timescale for which quasars are most luminous. Adopting quasar evolutionary scenarios, extended ($sim10^{2-3}$pc) obscuration may work together with the shorter timescales to explain the observed fraction of obscured, luminous quasars, while outflows driven by radiation pressure will slowly clear this material over the AGN lifetime.
The two classic theories for the existence of sexual replication are that sex purges deleterious mutations from a population, and that sex allows a population to adapt more rapidly to changing environments. These two theories have often been presente d as opposing explanations for the existence of sex. Here, we develop and analyze evolutionary models based on the asexual and sexual replication pathways in Saccharomyces cerevisiae (Bakers yeast), and show that sexual replication can both purge deleterious mutations in a static environment, as well as lead to faster adaptation in a dynamic environment. This implies that sex can serve a dual role, which is in sharp contrast to previous theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا