ترغب بنشر مسار تعليمي؟ اضغط هنا

Proton recoil telescope based on diamond detectors for measurement of fusion neutrons

131   0   0.0 ( 0 )
 نشر من قبل Mikhail Osipenko
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Diamonds are very promising candidates for the neutron diagnostics in harsh environments such as fusion reactor. In the first place this is because of their radiation hardness, exceeding that of Silicon by an order of magnitude. Also, in comparison to the standard on-line neutron diagnostics (fission chambers, silicon based detectors, scintillators), diamonds are less sensitive to $gamma$ rays, which represent a huge background in fusion devices. Finally, their low leakage current at high temperature suppresses the detector intrinsic noise. In this talk a CVD diamond based detector has been proposed for the measurement of the 14 MeV neutrons from D-T fusion reaction. The detector was arranged in a proton recoil telescope configuration, featuring a plastic converter in front of the sensitive volume in order to induce the (n,p) reaction. The segmentation of the sensitive volume, achieved by using two crystals, allowed to perform measurements in coincidence, which suppressed the neutron elastic scattering background. A preliminary prototype was assembled and tested at FNG (Frascati Neutron Generator, ENEA), showing promising results regarding efficiency and energy resolution.



قيم البحث

اقرأ أيضاً

64 - P. Marini , L. Mathieu , M. Aiche 2019
Absolute measurements of neutron flux are an essential prerequisite of neutron-induced cross section measurements, neutron beam lines characterization and dosimetric investigations. A new gaseous detector has been developed for measurements of 0.2 to 2 MeV neutron flux based on proton-recoil process. The detector, consisting of two segmented ionization chambers read by Micromegas technology, has beed conceived to provide quasi-absolute neutron flux measurements with an accuracy of simeq3%. The gas pressure flexibility makes the telescope non sensitive to {gamma} and electrons background, and therefore advantageous over semi-conductor materials as a neutron flux instrument. The adjustable gas pressure and H-sample thickness, the use of Micromegas technology and the tracking capabilities allows the detection of neutrons on a large dynamical range and down to 200 keV with a good rejection of scattered neutron events and random background
A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a $^6$Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based on conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of $10^8$ n/cm$^2$s and at the 3 MeV D-D monochromatic neutron source named FNG (ENEA, Rome) with neutron fluxes of $10^6$ n/cm$^2$s. The neutron spectrum measurement was performed at the TAPIRO fast research reactor (ENEA, Casaccia) with fluxes of 10$^9$ n/cm$^2$s. The obtained spectra were compared to Monte Carlo simulations, modeling detector response with MCNP and Geant4.
This article introduces a design of a Low Noise Amplifier (LNA), for the field of diamond particle detectors. This amplifier is described from simulation to measurements, which include pulses from {alpha} particles detection. In hadron therapy, with high-frequency pulsed particle beams, the diamond detector is a promising candidate for beam monitoring and time-stamping, with prerequisite of fast electronics. The LNA is designed with surface mounted components and RF layout techniques to control costs and to allow timing performance suitable for sub-nanosecond edges of pulses. Also this amplifier offers the possibility of high voltage biasing, a characteristic essential for driving diamond detectors. Finally the greatest asset of this study is certainly the minimization of the power consumption, which allows us to consider designs with multiple amplifiers, in limited space, for striped diamond detectors.
The development of Chemical Vapour Deposition (CVD) diamond detectors requests for novel signal amplifiers, capable to match the superb signal-to-noise ratio and timing response of these detectors. Existing amplifiers are still far away from this goa l and are the dominant contributors to the overall system noise and the main source of degradation of the energy and timing resolution. We tested a number of commercial amplifiers designed for diamond detector readout to identify the best solution for a particular application. This application required a deposited energy threshold below 100 keV and timing resolution of the order of 200 ps at 200 keV. None of tested amplifiers satisfies these requirements. The best solution to such application found to be the Cividec C6 amplifier, which allows 100 keV minimal threshold, but its coincidence timing resolution at 200 keV is as large as 1.2 ns.
The design and construction of a recoil detector for the measurement of recoil protons of antiproton-proton elastic scattering at scattering angles close to 90$^{circ}$ are described. The performance of the recoil detector has been tested in the labo ratory with radioactive sources and at COSY with proton beams by measuring proton-proton elastic scattering. The results of laboratory tests and commissioning with beam are presented. Excellent energy resolution and proper working performance of the recoil detector validate the conceptual design of the KOALA experiment at HESR to provide the cross section data needed to achieve a precise luminosity determination at the PANDA experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا