ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical solutions of Einsteins equations for cosmological spacetimes with spatial topology S3 and symmetry group U(1)

44   0   0.0 ( 0 )
 نشر من قبل Florian Beyer
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider the single patch pseudo-spectral scheme for tensorial and spinorial evolution problems on the 2-sphere presented in [3,4] which is based on the spin-weighted spherical harmonics transform. We apply and extend this method to Einsteins equations and certain classes of spherical cosmological spacetimes. More specifically, we use the hyperbolic reductions of Einsteins equations obtained in the generalized wave map gauge formalism combined with Gerochs symmetry reduction, and focus on cosmological spacetimes with spatial S3-topologies and symmetry groups U(1) or U(1) x U(1). We discuss analytical and numerical issues related to our implementation. We test our code by reproducing the exact inhomogeneous cosmological solutions of the vacuum Einstein field equations obtained in [7].

قيم البحث

اقرأ أيضاً

We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, accounting for all the spin-weighted quadrupolar modes, and separately accounting for all the quadrupolar and octopolar modes. Consistent with th e posterior distributions reported in LVC_PE[1] (at 90% confidence), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Followup simulations performed using previously-estimated binary parameters most resemble the data. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz in [64 - 82M_odot], mass ratio q = m2/m1 in [0.6,1], and effective aligned spin chi_eff in [-0.3, 0.2], where chi_{eff} = (S1/m1 + S2/m2) cdothat{L} /M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and chi_{eff} are consistent with the data. Though correlated, the components spins (both in magnitude and directions) are not significantly constrained by the data. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black holes redshifted mass is consistent with Mf,z between 64.0 - 73.5M_odot and the final black holes dimensionless spin parameter is consistent with af = 0.62 - 0.73. As our approach invokes no intermediate approximations to general relativity and can strongly reject binaries whose radiation is inconsistent with the data, our analysis provides a valuable complement to LVC_PE[1].
Under a weak assumption of the existence of a geodesic null congruence, we present the general solution of the Einstein field equations in three dimensions with any value of the cosmological constant, admitting an aligned null matter field, and also gyratons (a matter field in the form of a null dust with an additional internal spin). The general local solution consists of the expanding Robinson-Trautman class and the non-expanding Kundt class. The gyratonic solutions reduce to spacetimes with a pure radiation matter field when the spin is set to zero. Without matter fields, we obtain new forms of the maximally symmetric vacuum solutions. We discuss these complete classes of solutions and their various subclasses. In particular, we identify the gravitational field of an arbitrarily accelerating source (the Kinnersley photon rocket, which reduces to a Vaidya-type non-moving object) in the Robinson-Trautman class, and pp-waves, vanishing scalar invariants (VSI) spacetimes, and constant scalar invariants (CSI) spacetimes in the Kundt class.
We present a general solution of the coupled Einstein-Maxwell field equations (without the source charges and currents) in three spacetime dimensions. We also admit any value of the cosmological constant. The whole family of such $Lambda$-electrovacu um local solutions splits into two distinct subclasses, namely the non-expanding Kundt class and the expanding Robinson-Trautman class. While the Kundt class only admits electromagnetic fields which are aligned along the geometrically privileged null congruence, the Robinson-Trautman class admits both aligned and also more complex non-aligned Maxwell fields. We derive all the metric and Maxwell field components, together with explicit constraints imposed by the field equations. We also identify the most important special spacetimes of this type, namely the coupled gravitational-electromagnetic waves and charged black holes.
108 - C. Las Heras , P. Leon 2019
The main objective of this work, is to show two inequivalent methods to obtain new spherical symmetric solutions of Einsteins Equations with anisotropy in the pressures in isotropic coordinates. This was done inspired by the MGD method, which is know n to be valid for line elements in Schwarzschild coordinates. As example, we obtained four analytical solutions using Gold III as seed solution. Two solutions, out of four, (one for each algorithm), satisfy the physical acceptability conditions.
135 - L. Rezzolla 1997
We compute the propagation and scattering of linear gravitational waves off a Schwarzschild black hole using a numerical code which solves a generalization of the Zerilli equation to a three dimensional cartesian coordinate system. Since the solution to this problem is well understood it represents a very good testbed for evaluating our ability to perform three dimensional computations of gravitational waves in spacetimes in which a black hole event horizon is present.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا