ترغب بنشر مسار تعليمي؟ اضغط هنا

Dimension Seven Operators in Standard Model with Right handed Neutrinos

74   0   0.0 ( 0 )
 نشر من قبل Subhaditya Bhattacharya
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we consider the Standard Model extended by a number of (light) right-handed neutrinos, and assume the presence of some heavy physics that cannot be directly produced, but can be probed by its low-energy effective interactions. Within this scenario, we obtain all the gauge-invariant dimension-seven effective operators, and determine whether each of the operators can be generated at tree-level by the heavy physics, or whether it is necessarily loop generated. We then use the tree-generated operators, including those containing right-handed neutrinos, to put limits on the scale of new physics $ Lambda $ using low-energy measurements. We also study the production of same-sign dileptons at the Large Hadron Collider (LHC) and determine the constraints on the heavy physics that can be derived form existing data, as well as the reach in probing $ Lambda $ expected from future runs of this collider.

قيم البحث

اقرأ أيضاً

249 - J.W. van Holten 2015
In this lecture I review the most relevant modifications of the Standard Model of particle physics that result from inclusion of right-handed neutrinos and a new neutral gauge boson Z.
We revisit the effective field theory of the standard model that is extended with sterile neutrinos, $N$. We examine the basis of complete and independent effective operators involving $N$ up to mass dimension seven (dim-7). By employing equations of motion, integration by parts, and Fierz and group identities, we construct relations among operators that were considered independent in the previous literature, and find seven redundant operators at dim-6, sixteen redundant operators and two new operators at dim-7. The correct numbers of operators involving $N$ are, without counting Hermitian conjugates, $16~(Lcap B)+1~(slashed{L}cap B)+2~(slashed{L}capslashed{B})$ at dim-6, and $47~(slashed{L}cap B)+5~(slashed{L}capslashed{B})$ at dim-7. Here $L/B~(slashed L/slashed B)$ stands for lepton/baryon number conservation (violation). We verify our counting by the Hilbert series approach for $n_f$ generations of the standard model fermions and sterile neutrinos. When operators involving different flavors of fermions are counted separately and their Hermitian conjugates are included, we find there are $29~(1614)$ and $80~(4206)$ operators involving sterile neutrinos at dim-6 and dim-7 respectively for $n_f=1~(3)$.
86 - Boyang Liu 2008
The electron and muon number violating muonium-antimuonium oscillation process in an extended Minimal Supersymmetric Standard Model is investigated. The Minimal Supersymmetric Standard Model is modified by the inclusion of three right-handed neutrino superfields. While the model allows the neutrino mass terms to mix among the different generations, the sneutrino and slepton mass terms have only intra-generation lepton number violation but not inter-generation lepton number mixing. So doing, the muonium-antimuonium conversion can then be used to constrain those model parameters which avoid further constraint from the $muto egamma$ decay bounds. For a wide range of parameter values, the contributions to the muonium-antimuonium oscillation time scale are at least two orders of magnitude below the sensivity of current experiments. However, if the ratio of the two Higgs field VEVs, $tanbeta$, is very small, there is a limited possibility that the contributions are large enough for the present experimental limit to provide an inequality relating $tanbeta$ with the light neutrino mass scale $m_ u$ which is generated by see-saw mechanism. The resultant lower bound on $tanbeta$ as a function of $m_ u$ is more stringent than the analogous bounds arising from the muon and electron anomalous magnetic moments as computed using this model.
Several models of neutrino masses predict the existence of neutral heavy leptons. Here, we review current constraints on heavy neutrinos and apply a new formalism separating new physics from Standard Model. We discuss also the indirect effect of extra heavy neutrinos in oscillation experiments.
In this paper we discuss the consequences of including a new heavy right-handed neutrino singlet $N_R$ in the littlest Higgs model. This new state is not connected with the light neutrinos {it via} the seesaw mechanism. A very interesting property of this extended model is the full coupling of the new neutral gauge boson $A_H$ to $N_R$, giving large total cross sections and suggesting a wide range of experimental search for the $N_R$ at the p p collider CERN-LHC and future electron-positron collider ILC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا