ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution imaging of the molecular outflows in two mergers: IRAS17208-0014 and NGC1614

48   0   0.0 ( 0 )
 نشر من قبل Santiago Garcia-Burillo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galaxy evolution scenarios predict that the feedback of star formation and nuclear activity (AGN) can drive the transformation of gas-rich spiral mergers into ULIRGs, and, eventually, lead to the build-up of QSO/elliptical hosts. We study the role that star formation and AGN feedback have in launching and maintaining the molecular outflows in two starburst-dominated advanced mergers, NGC1614 and IRAS17208-0014, by analyzing the distribution and kinematics of their molecular gas reservoirs. We have used the PdBI array to image with high spatial resolution (0.5-1.2) the CO(1-0) and CO(2-1) line emissions in NGC1614 and IRAS17208-0014, respectively. The velocity fields of the gas are analyzed and modeled to find the evidence of molecular outflows in these sources and characterize the mass, momentum and energy of these components. While most (>95%) of the CO emission stems from spatially-resolved (~2-3kpc-diameter) rotating disks, we also detect in both mergers the emission from high-velocity line wings that extend up to +-500-700km/s, well beyond the estimated virial range associated with rotation and turbulence. The kinematic major axis of the line wing emission is tilted by ~90deg in NGC1614 and by ~180deg in IRAS17208-0014 relative to their respective rotating disk major axes. These results can be explained by the existence of non-coplanar molecular outflows in both systems. In stark contrast with NGC1614, where star formation alone can drive its molecular outflow, the mass, energy and momentum budget requirements of the molecular outflow in IRAS17208-0014 can be best accounted for by the existence of a so far undetected (hidden) AGN of L_AGN~7x10^11 L_sun. The geometry of the molecular outflow in IRAS17208-0014 suggests that the outflow is launched by a non-coplanar disk that may be associated with a buried AGN in the western nucleus.

قيم البحث

اقرأ أيضاً

70 - De-Jian Liu , Ye Xu , Ying-Jie Li 2020
We present a study of molecular outflows using six molecular lines (including 12CO/13CO/C18O/HCO+(J = 1-0) and SiO/CS(J = 2-1)) toward nine nearby high-mass star-forming regions with accurate known distances. This work is based on the high-sensitivit y observations obtained with the 14-m millimeter telescope of Purple Mountain Observatory Delingha (PMODLH) observatory. The detection rate of outflows (including 12CO, 13CO, HCO+, and CS) is 100%. However, the emission of SiO was not detected for all sources. The full line widths ($Delta V$) at 3$sigma$ above the baseline of these molecular lines have the relationship $Delta V_{rm ^{12}CO} > Delta V_{rm HCO^{+}} > Delta V_{rm CS} approx Delta V_{rm ^{13}CO} > Delta V_{rm ^{18}CO}$. 12CO and HCO+ can be used to trace relatively high-velocity outflows, while 13CO and CS can be employed to trace relatively low-velocity outflows. The dynamical timescales of the 13CO and CS outflows are longer than those of the 12CO and HCO+ outflows. The mechanical luminosities, masses, mass-loss rates and forces of all outflows (including 12CO, 13CO, HCO+, and CS) are correlated with the bolometric luminosities of their central IRAS sources.
81 - M.T. Beltran 2011
Context. This study is part of a large project to study the physics of accretion and molecular outflows towards a selected sample of high-mass star-forming regions that show evidence of infall and rotation from previous studies. Aims. We wish to make a thorough study at high-angular resolution of the structure and kinematics of the HMCs and corresponding molecular outflows in the high-mass star-forming region G24.78+0.08. Methods. We carried out SMA and IRAM PdBI observations at 1.3 and 1.4 mm, respectively, of dust and of typical high-density and molecular outflow tracers with resolutions of <1. Complementary IRAM 30-m 12CO and 13CO observations were carried out to recover the short spacing information of the molecular outflows. Results. The millimeter continuum emission towards cores G24 A1 and A2 has been resolved into 3 and 2 cores, respectively, and named A1, A1b, A1c, A2, and A2b. All these cores are aligned in a southeast-northwest direction coincident with that of the molecular outflows detected in the region, which suggests a preferential direction for star formation in this region. The masses of the cores range from 7 to 22 Msun, and the rotational temperatures from 128 to 180 K. The high-density tracers have revealed the existence of 2 velocity components towards A1, one of them peaks close to the position of the millimeter continuum peak and of the HC HII region, and is associated with the velocity gradient seen in CH3CN towards this core, while the other one peaks southwest of core A1 and is not associated with any millimeter continuum emission peak. The position-velocity plots along outflow A and the 13CO averaged blueshifted and redshifted emission indicate that this outflow is driven by core A2.
We present high resolution images of the 12CO(2-1) emission in the central 1 (1 kpc) of NGC 5128 (Centaurus A), observed using the SMA. We elucidate for the first time the distribution and kinematics of the molecular gas in this region with a resolut ion of 6.0 x 2.4 (100 pc x 40 pc). We spatially resolve the circumnuclear molecular gas in the inner 24 x 12 (400 pc x 200 pc), which is elongated along a position angle P.A. = 155 deg and perpendicular to the radio/X-ray jet. The SE and NW components of the circumnuclear gas are connected to molecular gas found at larger radii. This gas appears as two parallel filaments at P.A. = 120 deg, which are coextensive with the long sides of the 3 kiloparsec parallelogram shape of the previously observed dust continuum, as well as ionized and pure rotational H2 lines. Spatial and kinematical asymmetries are apparent in both the circumnuclear and outer gas, suggesting non-coplanar and/or non-circular motions. We extend to inner radii (r < 200 pc) previously studied warped disk models built to reproduce the central parallelogram-shaped structure. Adopting the warped disk model we would confirm a gap in emission between the radii r = 200 - 800 pc (12 - 50), as has been suggested previously. Although this model explains this prominent feature, however, our 12CO(2-1) observations show relevant deviations from this model. Namely, the physical connection between the circumnuclear gas and that at larger radii, brighter SE and NW sides on the parallelogram-shaped feature, and an outer curvature of its long sides. Overall it resembles more closely an S-shaped morphology, a trend that is also found in other molecular species. Hence, we explore qualitatively the possible contribution of a weak bi-symmetric potential which would naturally explain these peculiarities.
82 - T. Saito , D. Iono , J. Ueda 2017
We present 0.97 $times$ 0.53 (470 pc $times$ 250 pc) resolution CO ($J$ = 2-1) observations toward the nearby luminous merging galaxy NGC 6240 with the Atacama Large Millimeter/submillimeter Array. We confirmed a strong CO concentration within the ce ntral 700 pc, which peaks between the double nuclei, surrounded by extended CO features along the optical dust lanes ($sim$11 kpc). We found that the CO emission around the central a few kpc has extremely broad velocity wings with full width at zero intensity $sim$ 2000 km s$^{-1}$, suggesting a possible signature of molecular outflow(s). In order to extract and visualize the high-velocity components in NGC 6240, we performed a multiple Gaussian fit to the CO datacube. The distribution of the broad CO components show four extremely large linewidth regions ($sim$1000 km s$^{-1}$) located 1-2 kpc away from both nuclei. Spatial coincidence of the large linewidth regions with H$alpha$, near-IR H$_2$, and X-ray suggests that the broad CO (2-1) components are associated with nuclear outflows launched from the double nuclei.
We present a 154 pointing IRAM NOEMA mosaic of the CO(1-0) line emission in and around the nearby starburst galaxy M82. The observations, complemented by zero--spacing observations, reach a spatial resolution of $sim$30 pc ($sim 1.9^{primeprime}$) at 5.0 km s$^{-1}$ spectral resolution, sufficient to resolve the molecular gas in the central starburst disk, the outflow, as well as the tidal streamers. The resulting moment and peak brightness maps show a striking amount of structure. Using a clump decomposition algorithm, we analyse the physical properties (e.g., radii $R$, line widths $sigma$, and masses $M$) of $sim2000$ molecular clouds. To first order, the clouds properties are very similar, irrespective of their environment. This also holds for the size-line width relations of the clouds. The distribution of clouds in the $sigma^2/R$ vs. column density $Sigma$ space suggests that external pressure does not play a significant role in setting their physical parameters in the outflow and the streamers. We find that the clouds in the streamers stay approximately constant in size ($R sim 50$ pc) and mass ($M sim 10^5$ M$_odot$) and do not vary with their projected distance from M82s center. The clouds in the outflow, on the other hand, appear to decrease in size and mass with distance towards the Southern outflow. The reduction in the molecular gas luminosity could be indicative of cloud evaporation of embedded clouds in the hot outflow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا