ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing eccentricity pumping mechanisms to model eccentric long period sdB binaries with MESA

93   0   0.0 ( 0 )
 نشر من قبل Joris Vos
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hot subdwarf-B stars in long-period binaries are found to be on eccentric orbits, even though current binary-evolution theory predicts those objects to be circularised before the onset of Roche-lobe overflow (RLOF). We aim to find binary-evolution mechanisms that can explain these eccentric long-period orbits, and reproduce the currently observed period-eccentricity diagram. Three different processes are considered; tidally-enhanced wind mass-loss, phase-dependent RLOF on eccentric orbits and the interaction between a circumbinary disk and the binary. The binary module of the stellar-evolution code MESA (Modules for Experiments in Stellar Astrophysics) is extended to include the eccentricity-pumping processes. The effects of different input parameters on the final period and eccentricity of a binary-evolution model are tested with MESA. The end products of models with only tidally-enhanced wind mass-loss can indeed be eccentric, but these models need to lose too much mass, and invariably end up with a helium white dwarf that is too light to ignite helium. Within the tested parameter space, no sdBs in eccentric systems are formed. Phase-dependent RLOF can reintroduce eccentricity during RLOF, and could help to populate the short-period part of the period-eccentricity diagram. When phase-dependent RLOF is combined with eccentricity pumping via a circumbinary disk, the higher eccentricities can be reached as well. A remaining problem is that these models favour a distribution of higher eccentricities at lower periods, while the observed systems show the opposite. The models presented here are potentially capable of explaining the period-eccentricity distribution of long-period sdB binaries, but further theoretical work on the physical mechanisms is necessary.



قيم البحث

اقرأ أيضاً

We develop a technique for estimating the inner eccentricity in hierarchical triple systems, with the inner orbit being initially circular, while the outer one is eccentric. We consider coplanar systems with well separated components and comparable m asses. The derivation of short period terms is based on an expansion of the rate of change of the Runge-Lenz vector. Then, the short period terms are combined with secular terms, obtained by means of canonical perturbation theory. The validity of the theoretical equations is tested by numerical integrations of the full equations of motion.
Most subdwarf B (sdB) + Helium white dwarf (He WD) binaries are believed to be formed from a particular channel. In this channel, the He WDs are produced first from red giants (RGs) with degenerate cores via stable mass transfer and sdB stars are pro duced from RGs with degenerate cores via common envelope (CE) ejection. They are important for the studies of CE evolution, binary evolution, and binary population synthesis. However, the relation between WD mass and orbital period of sdB + He WD binaries has not been specifically studied. In this paper, we first use a semi-analytic method to follow their formation and find a WD mass and orbital period relation. Then we use a detailed stellar evolution code to model their formation from main-sequence binaries. We find a similar relation between the WD mass and orbital period, which is in broad agreement with observations. For most sdB + He WD systems, if the WD mass (orbital period) can be determined, the orbital period (WD mass) can be inferred with this relation and then the inclination angle can be constrained with the binary mass function. In addition, we can also use this relation to constrain the CE ejection efficiency and find that a relative large CE ejection efficiency is favoured. If both the WD and sdB star masses can be determined, the critical mass ratios of dynamically unstable mass transfer for RG binaries can also be constrained.
The predicted orbital-period distribution of the subdwarf-B (sdB) population is bi-modal with a peak at short (< 10 days) and long (> 500 days) periods. Observationally, many short-period sdB systems are known, but only few wide sdB binaries have bee n studied in detail. Based on a long-term monitoring program the wide sdB sample has been increased, finding an unexpected correlation between the eccentricity and period. In this article we present the orbital solution and spectral analysis of four new systems, BD-7.5977, EC11031-1348, TYC2084-448-1 and TYC3871-835-1, and update the orbital solution of PG1104+243. Using the whole sample of wide sdBs, we aim at finding possible correlations between orbital and spectral properties, with as goal improving theoretical models of Roche-lobe overflow. High-resolution spectra were obtained to determine the radial velocities of both the sdB and MS components. Surface gravities and temperatures of both component were derived from photometric spectral-energy distributions. Spectral parameters of the cool companion were verified using the GSSP code. Furthermore the amount of accreted mass was estimated. Orbital parameters matching the earlier observed period-eccentricity relation were found for three systems, while TYC 2084-448-1 is found to have a lower eccentricity than expected from the period-eccentricity trend indicated by the other systems. Based on new observations, the orbit of PG 1104+243 has a small but significant eccentricity of 0.04 $pm$ 0.02, matching other systems with similar periods. Furthermore, a correlation between accreted mass and orbital period was found, as well as a possible relation between the initial mass-ratio and the final period-eccentricity. The wide sdB-binary sample shows interesting possible correlations between orbital and spectral properties. However, a larger sample is necessary to statistically validate them.
Wide binaries with hot subdwarf-B (sdB) primaries and main sequence companions are thought to form only through stable Roche lobe overflow (RLOF) of the sdB progenitor near the tip of the red giant branch (RGB). We present the orbital parameters of e leven new long period composite sdB binaries based on spectroscopic observations obtained with the UVES, FEROS and CHIRON spectrographs. Using all wide sdB binaries with known orbital parameters, 23 systems, the observed period distribution is found to match very well with theoretical predictions. A second result is the strong correlation between the orbital period (P) and the mass ratio (q) in the observed wide sdB binaries. In the P-q plane two distinct groups emerge, with the main group (18 systems) showing a strong correlation of lower mass ratios at longer orbital periods. The second group are systems that are thought to be formed from higher mass progenitors. Based on theoretical models, a correlation between the initial mass ratio at the start of RLOF and core mass of the sdB progenitor is found, which defines a mass-ratio range at which RLOF is stable on the RGB.
Over half of all observed hot subdwarf B (sdB) stars are found in binaries, and over half of these are found in close configurations with orbital periods of 10$ ,rm{d}$ or less. In order to estimate the companion masses in these predominantly single- lined systems, tidal locking has frequently been assumed for sdB binaries with periods less than half a day. Observed non-synchronicity of a number of close sdB binaries challenges that assumption and hence provides an ideal testbed for tidal theory. We solve the second-order differential equations for detailed 1D stellar models of sdB stars to obtain the tidal dissipation strength and hence to estimate the tidal synchronization time-scale owing to Zahns dynamical tide. The results indicate synchronization time-scales longer than the sdB lifetime in all observed cases. Further, we examine the roles of convective overshooting and convective dissipation in the core of sdB stars and find no theoretical framework in which tidally-induced synchronization should occur.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا