ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation of natural radioactivity backgrounds in the central detector

132   0   0.0 ( 0 )
 نشر من قبل Li XinYing
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Jiangmen Underground Neutrino Observatory (JUNO) is an experiment proposed to determine the neutrino mass hierarchy and probe the fundamental properties of neutrino oscillation. The JUNO central detector is a spherical liquid scintillator detector with 20 kton fiducial mass. It is required to achieve a $3%/sqrt{E(MeV)}$ energy resolution with very low radioactive background, which is a big challenge to the detector design. In order to ensure the detector performance can meet the physics requirements, reliable detector simulation is necessary to provide useful information for detector design. A simulation study of natural radioactivity backgrounds in the JUNO central detector has been performed to guide the detector design and set requirements to the radiopurity of detector materials.



قيم البحث

اقرأ أيضاً

We examine electron and nuclear recoil backgrounds from radioactivity in the ZEPLIN-III dark matter experiment at Boulby. The rate of low-energy electron recoils in the liquid xenon WIMP target is 0.75$pm$0.05 events/kg/day/keV, which represents a 20 -fold improvement over the rate observed during the first science run. Energy and spatial distributions agree with those predicted by component-level Monte Carlo simulations propagating the effects of the radiological contamination measured for materials employed in the experiment. Neutron elastic scattering is predicted to yield 3.05$pm$0.5 nuclear recoils with energy 5-50 keV per year, which translates to an expectation of 0.4 events in a 1-year dataset in anti-coincidence with the veto detector for realistic signal acceptance. Less obvious background sources are discussed, especially in the context of future experiments. These include contamination of scintillation pulses with Cherenkov light from Compton electrons and from $beta$ activity internal to photomultipliers, which can increase the size and lower the apparent time constant of the scintillation response. Another challenge is posed by multiple-scatter $gamma$-rays with one or more vertices in regions that yield no ionisation. If the discrimination power achieved in the first run can be replicated, ZEPLIN-III should reach a sensitivity of $sim 1 times 10^{-8}$ pb$cdot$year to the scalar WIMP-nucleon elastic cross-section, as originally conceived.
The search for neutrinoless double-beta decay (0{ u}{beta}{beta}) requires extremely low background and a good understanding of their sources and their influence on the rate in the region of parameter space relevant to the 0{ u}{beta}{beta} signal. W e report on studies of various {beta}- and {gamma}-backgrounds in the liquid- xenon-based EXO-200 0{ u}{beta}{beta} experiment. With this work we try to better understand the location and strength of specific background sources and compare the conclusions to radioassay results taken before and during detector construction. Finally, we discuss the implications of these studies for EXO-200 as well as for the next-generation, tonne-scale nEXO detector.
89 - Tao Lin , Ziyan Deng , Weidong Li 2016
The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment designed to measure the neutrino mass hierarchy using a central detector (CD), which contains 20 kton liquid scintillator (LS) surrounded by about 17,000 phot omultiplier tubes (PMTs). Due to the large fiducial volume and huge number of PMTs, the simulation of a muon particle passing through the CD with the Geant4 toolkit becomes an extremely computation-intensive task. This paper presents a fast simulation implementation using a so-called voxel method: for scintillation photons generated in a certain LS voxel, the PMTs response is produced beforehand with Geant4 and then introduced into the simulation at runtime. This parameterisation method successfully speeds up the most CPU consuming process, the optical photons propagation in the LS, by a factor of 50. In the paper, the comparison of physics performance between fast and full simulation is also given.
93 - Y.P. Zhang , J.L. Xu , H.Q. Lu 2016
In the case of underground experiments for neutrino physics or rare event searches, the background caused by cosmic muons contributes significantly and therefore must be identified and rejected. We proposed and optimized a new detector using liquid s cintillator with wavelenghth-shifting fibers which can be employed as a veto detector for cosmic muons background rejection. From the prototype study, it has been found that the detector has good performances and is capable of discriminating between muons induced signals and environmental radiation background. Its muons detection efficiency is greater than 98$%$, and on average, 58 photo-electrons (p.e.) are collected when a muon passes through the detector. To optimize the design and enhance the collection of light, the reflectivity of the coating materials has been studied in detail. A Monte Carlo simulation of the detector has been developed and compared to the performed measurements showing a good agreement between data and simulation results.
We describe the Monte Carlo (MC) simulation package of the Borexino detector and discuss the agreement of its output with data. The Borexino MC ab initio simulates the energy loss of particles in all detector components and generates the resulting sc intillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The algorithm proceeds with a detailed simulation of the electronics chain. The MC is tuned using data collected with radioactive calibration sources deployed inside and around the scintillator volume. The simulation reproduces the energy response of the detector, its uniformity within the fiducial scintillator volume relevant to neutrino physics, and the time distribution of detected photons to better than 1% between 100 keV and several MeV. The techniques developed to simulate the Borexino detector and their level of refinement are of possible interest to the neutrino community, especially for current and future large-volume liquid scintillator experiments such as Kamland-Zen, SNO+, and Juno.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا