ﻻ يوجد ملخص باللغة العربية
In this paper we use results from Computable Set Theory as a means to represent and reason about description logics and rule languages for the semantic web. Specifically, we introduce the description logic $mathcal{DL}langle 4LQS^Rrangle(D)$--admitting features such as min/max cardinality constructs on the left-hand/right-hand side of inclusion axioms, role chain axioms, and datatypes--which turns out to be quite expressive if compared with $mathcal{SROIQ}(D)$, the description logic underpinning the Web Ontology Language OWL. Then we show that the consistency problem for $mathcal{DL}langle 4LQS^Rrangle(D)$-knowledge bases is decidable by reducing it, through a suitable translation process, to the satisfiability problem of the stratified fragment $4LQS^R$ of set theory, involving variables of four sorts and a restricted form of quantification. We prove also that, under suitable not very restrictive constraints, the consistency problem for $mathcal{DL}langle 4LQS^Rrangle(D)$-knowledge bases is textbf{NP}-complete. Finally, we provide a $4LQS^R$-translation of rules belonging to the Semantic Web Rule Language (SWRL).
Graded modal types systems and coeffects are becoming a standard formalism to deal with context-dependent computations where code usage plays a central role. The theory of program equivalence for modal and coeffectful languages, however, is considera
The set consensus problem has played an important role in the study of distributed systems for over two decades. Indeed, the search for lower bounds and impossibility results for this problem spawned the topological approach to distributed computing,
Explicit theory axioms are added by a saturation-based theorem prover as one of the techniques for supporting theory reasoning. While simple and effective, adding theory axioms can also pollute the search space with many irrelevant consequences. As a
Structural proof theory is praised for being a symbolic approach to reasoning and proofs, in which one can define schemas for reasoning steps and manipulate proofs as a mathematical structure. For this to be possible, proof systems must be designed a
The $omega$-power of a finitary language L over a finite alphabet $Sigma$ is the language of infinite words over $Sigma$ defined by L $infty$ := {w 0 w 1. .. $in$ $Sigma$ $omega$ | $forall$i $in$ $omega$ w i $in$ L}. The $omega$-powers appear very na