ﻻ يوجد ملخص باللغة العربية
In this work we are reporting on the measurement of the proton-air inelastic cross section $sigma^{rm inel}_{rm p-air}$ using the Telescope Array (TA) detector. Based on the measurement of the $sigma^{rm inel}_{rm p-air}$ the proton-proton cross section $sigma_{rm p-p}$ value is also determined at $sqrt{s} = 95_{-8}^{+5}$ TeV. Detecting cosmic ray events at ultra high energies with Telescope Array enables us to study this fundamental parameter that we are otherwise unable to access with particle accelerators. The data used in this report is the hybrid events observed by the Middle Drum fluorescence detector together with the surface array detector collected over five years. The value of the $sigma^{rm inel}_{rm p-air}$ is found to be equal to $567.0 pm 70.5 [{rm Stat.}] ^{+29}_{-25} [{rm Sys.}]$ mb. The total proton-proton cross section is subsequently inferred from Glauber Formalism and Block, Halzen and Stanev QCD inspired fit and is found to be equal to $170_{-44}^{+48} [{rm Stat.}] _{-17}^{+19} [{rm Sys.}] $mb.
Previous measurements of the composition of Ultra-High Energy Cosmic Rays(UHECRs) made by the High Resolution Flys Eye(HiRes) and Pierre Auger Observatory(PAO) are seemingly contradictory, but utilize different detection methods, as HiRes was a stere
Ultra high energy cosmic rays provide the highest known energy source in the universe to measure proton cross sections. Though conditions for collecting such data are less controlled than an accelerator environment, current generation cosmic ray obse
Aiming at the observation of cosmic-ray chemical composition at the knee energy region, we have been developinga new type air-shower core detector (YAC, Yangbajing Air shower Core detector array) to be set up at Yangbajing (90.522$^circ$ E, 30.102$^c
The Telescope Arrays Middle Drum fluorescence detector was instrumented with telescopes refurbished from the High Resolution Flys Eyes HiRes-1 site. The data observed by Middle Drum in monocular mode was analyzed via the HiRes-1 profile-constrained g
The Telescope Array observatory utilizes fluorescence detectors and surface detectors to observe air showers produced by ultra high energy cosmic rays in the Earths atmosphere. Cosmic ray events observed in this way are termed hybrid data. The depth