ترغب بنشر مسار تعليمي؟ اضغط هنا

Optically Loaded Semiconductor Quantum Memory Register

213   0   0.0 ( 0 )
 نشر من قبل Danny Kim
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and analyze an optically loaded quantum memory exploiting capacitive coupling between self-assembled quantum dot molecules and electrically gated quantum dot molecules. The self-assembled dots are used for spin-photon entanglement, which is transferred to the gated dots for long-term storage or processing via a teleportation process heralded by single-photon detection. We illustrate a device architecture enabling this interaction and we outline its operation and fabrication. We provide self-consistent Poisson-Schroedinger simulations to establish the design viability and refine the design, and to estimate the physical coupling parameters and their sensitivities to dot placement. The device we propose generates heralded copies of an entangled state between a photonic qubit and a solid-state qubit with a rapid reset time upon failure. The resulting fast rate of entanglement generation is of high utility for heralded quantum networking scenarios involving lossy optical channels.

قيم البحث

اقرأ أيضاً

Spins associated to single defects in solids provide promising qubits for quantum information processing and quantum networks. Recent experiments have demonstrated long coherence times, high-fidelity operations and long-range entanglement. However, c ontrol has so far been limited to a few qubits, with entangled states of three spins demonstrated. Realizing larger multi-qubit registers is challenging due to the need for quantum gates that avoid crosstalk and protect the coherence of the complete register. In this paper, we present novel decoherence-protected gates that combine dynamical decoupling of an electron spin with selective phase-controlled driving of nuclear spins. We use these gates to realize a 10-qubit quantum register consisting of the electron spin of a nitrogen-vacancy center and 9 nuclear spins in diamond. We show that the register is fully connected by generating entanglement between all 45 possible qubit pairs, and realize genuine multipartite entangled states with up to 7 qubits. Finally, we investigate the register as a multi-qubit memory. We show coherence times up to 63(2) seconds - the longest reported for a single solid-state qubit - and demonstrate that two-qubit entangled states can be stored for over 10 seconds. Our results enable the control of large quantum registers with long coherence times and therefore open the door to advanced quantum algorithms and quantum networks with solid-state spin qubits.
We demonstrate the realization of a quantum register using a string of single neutral atoms which are trapped in an optical dipole trap. The atoms are selectively and coherently manipulated in a magnetic field gradient using microwave radiation. Our addressing scheme operates with a high spatial resolution and qubit rotations on individual atoms are performed with 99% contrast. In a final read-out operation we analyze each individual atomic state. Finally, we have measured the coherence time and identified the predominant dephasing mechanism for our register.
As a nuclear spin model of scalable quantum register, the one-dimensional chain of the magnetic atoms with nuclear spins 1/2 substituting the basic atoms in the plate of nuclear spin free easy-axis 3D antiferromagnet is considered. It is formulated t he generalized antiferromagnet Hamiltonian in spin-wave approximation (low temperatures) considering the inhomogeneous external magnetic field, which is directed along the easy axis normally to plane of the plate and has a constant gradient along the nuclear spin chain. Assuming a weak gradient, the asymptotic expression for coefficients of unitary transformations to the diagonal form of antiferromagnet Hamiltonian is found. With this result the expression for indirect interspin coupling, which is due to hyperfine nuclear electron coupling in atoms and the virtual spin wave propagation in antiferromagnet ground state, was evaluated. It is shown that the inhomogeneous magnetic field essentially modifies the characteristics of indirect interspin coupling. The indirect interaction essentially grows and even oscillates in relation to the interspin distance when the local field value in the middle point of two considered nuclear spin is close to the critical field for quantum phase transition of spin-flop type in bulk antiferromagnet or close to antiferromagnetic resonance. Thus, the external magnetic field, its gradient, microwave frequency and power can play the role of control parameters for qubit states. Finally, the one and two qubit states decoherence and longitudinal relaxation rate are caused by the interaction of nuclear spins with virtual spin waves in antiferromagnet ground state are calculated.
131 - John H. Reina 2000
A major question for condensed matter physics is whether a solid-state quantum computer can ever be built. Here we discuss two different schemes for quantum information processing using semiconductor nanostructures. First, we show how optically drive n coupled quantum dots can be used to prepare maximally entangled Bell and Greenberger-Horne-Zeilinger states by varying the strength and duration of selective light pulses. The setup allows us to perform an all-optical generation of the quantum teleportation of an excitonic state in an array of coupled quantum dots. Second, we give a proposal for reliable implementation of quantum logic gates and long decoherence times in a quantum dots system based on nuclear magnetic resonance (NMR), where the nuclear resonance is controlled by the ground state transitions of few-electron QDs in an external magnetic field. The dynamical evolution of these systems in the presence of environmentally-induced decoherence effects is also discussed.
Spin-bearing molecules are promising building blocks for quantum technologies as they can be chemically tuned, assembled into scalable arrays, and readily incorporated into diverse device architectures. In molecular systems, optically addressing grou nd-state spins would enable a wide range of applications in quantum information science, as has been demonstrated for solid-state defects. However, this important functionality has remained elusive for molecules. Here, we demonstrate such optical addressability in a series of synthesized organometallic, chromium(IV) molecules. These compounds display a ground-state spin that can be initialized and read out using light, and coherently manipulated with microwaves. In addition, through atomistic modification of the molecular structure, we tune the spin and optical properties of these compounds, paving the way for designer quantum systems synthesized from the bottom-up.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا