ﻻ يوجد ملخص باللغة العربية
Minor bodies of the solar system can be used to measure the spectrum of the Sun as a star by observing sunlight reflected by their surfaces. To perform an accurate measurement of the radial velocity of the Sun as a star by this method, it is necessary to take into account the Doppler shifts introduced by the motion of the reflecting body. Here we discuss the effect of its rotation. It gives a vanishing contribution only when the inclinations of the body rotation axis to the directions of the Sun and of the Earth observer are the same. When this is not the case, the perturbation of the radial velocity does not vanish and can reach up to about 2.4 m/s for an asteroid such as 2 Pallas that has an inclination of the spin axis to the plane of the ecliptic of about 30 degrees. We introduce a geometric model to compute the perturbation in the case of a uniformly reflecting body of spherical or triaxial ellipsoidal shape and provide general results to easily estimate the magnitude of the effect.
The radial velocity of the Sun as a star is affected by its surface convection and magnetic activity. The moments of the cross-correlation function between the solar spectrum and a binary line mask contain information about the stellar radial velocit
The time-variable velocity fields of solar-type stars limit the precision of radial-velocity determinations of their planets masses, obstructing detection of Earth twins. Since 2015 July we have been monitoring disc-integrated sunlight in daytime usi
Using solar spectral irradiance measurements from the SORCE spacecraft and the F/F technique, we have estimated the radial velocity (RV) scatter induced on the Sun by stellar activity as a function of wavelength. Our goal was to evaluate the potentia
With an aim to examine how much information of solar rotation can be obtained purely spectroscopically by observing the sun-as-a-star during the 2012 May 21 eclipse at Okayama Astrophysical Observatory, we studied the variation of radial velocities (
The solar telescope connected to HARPS-N has been observing the Sun since the summer of 2015. Such high-cadence, long-baseline data set is crucial for understanding spurious radial-velocity signals induced by our Sun and by the instrument. On the ins