ﻻ يوجد ملخص باللغة العربية
The advantage of Pauli-Villars regularization in quantum field theory quantized on the light front is explained. Simple examples of scalar $lambdavarphi^4$ field theory and Yukawa-type model are used. We give also an example of nonperturbative calculation in the theory with Pauli-Villars fields, using for that a model of anharmonic oscillator modified by inclusion of ghost variables playing the role similar to Pauli-Villars fields.
Calculations in a (3+1)-dimensional model indicate that Pauli-Villars regularization can be combined with discrete light-cone quantization (DLCQ) to solve at least some field theories nonperturbatively. Discrete momentum states of Pauli-Villars parti
The techniques of Pauli-Villars regularization and discrete light-cone quantization are combined to analyze Yukawa theory in a single-fermion truncation. A special form of the Lanczos algorithm is constructed for diagonalization of the indefinite-metric light-cone Hamiltonian.
The Pauli-Villars regularization scheme is often used for evaluating parton distributions within the framework of the chiral quark soliton model with inclusion of the vacuum polarization effects. Its simplest version with a single subtraction term sh
Basis Light-front Quantization (BLFQ) has recently been developed as a promising nonperturbative technique. Using BLFQ, we investigate the Generalized Parton Distributions (GPDs) in a nonperturbative framework for a dressed electron in QED. We evalua
We present a general framework to calculate the properties of relativistic compound systems from the knowledge of an elementary Hamiltonian. Our framework provides a well-controlled nonperturbative calculational scheme which can be systematically imp