ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Global Convergence of Majorization Minimization Algorithms for Nonconvex Optimization Problems

131   0   0.0 ( 0 )
 نشر من قبل Yangyang Kang
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the global convergence of majorization minimization (MM) algorithms for solving nonconvex regularized optimization problems. MM algorithms have received great attention in machine learning. However, when applied to nonconvex optimization problems, the convergence of MM algorithms is a challenging issue. We introduce theory of the Kurdyka- Lojasiewicz inequality to address this issue. In particular, we show that many nonconvex problems enjoy the Kurdyka- Lojasiewicz property and establish the global convergence result of the corresponding MM procedure. We also extend our result to a well known method that called CCCP (concave-convex procedure).



قيم البحث

اقرأ أيضاً

328 - Julien Mairal 2013
Majorization-minimization algorithms consist of iteratively minimizing a majorizing surrogate of an objective function. Because of its simplicity and its wide applicability, this principle has been very popular in statistics and in signal processing. In this paper, we intend to make this principle scalable. We introduce a stochastic majorization-minimization scheme which is able to deal with large-scale or possibly infinite data sets. When applied to convex optimization problems under suitable assumptions, we show that it achieves an expected convergence rate of $O(1/sqrt{n})$ after $n$ iterations, and of $O(1/n)$ for strongly convex functions. Equally important, our scheme almost surely converges to stationary points for a large class of non-convex problems. We develop several efficient algorithms based on our framework. First, we propose a new stochastic proximal gradient method, which experimentally matches state-of-the-art solvers for large-scale $ell_1$-logistic regression. Second, we develop an online DC programming algorithm for non-convex sparse estimation. Finally, we demonstrate the effectiveness of our approach for solving large-scale structured matrix factorization problems.
In this paper, we introduce a proximal-proximal majorization-minimization (PPMM) algorithm for nonconvex tuning-free robust regression problems. The basic idea is to apply the proximal majorization-minimization algorithm to solve the nonconvex proble m with the inner subproblems solved by a sparse semismooth Newton (SSN) method based proximal point algorithm (PPA). We must emphasize that the main difficulty in the design of the algorithm lies in how to overcome the singular difficulty of the inner subproblem. Furthermore, we also prove that the PPMM algorithm converges to a d-stationary point. Due to the Kurdyka-Lojasiewicz (KL) property of the problem, we present the convergence rate of the PPMM algorithm. Numerical experiments demonstrate that our proposed algorithm outperforms the existing state-of-the-art algorithms.
Nonconvex minimax problems appear frequently in emerging machine learning applications, such as generative adversarial networks and adversarial learning. Simple algorithms such as the gradient descent ascent (GDA) are the common practice for solving these nonconvex games and receive lots of empirical success. Yet, it is known that these vanilla GDA algorithms with constant step size can potentially diverge even in the convex setting. In this work, we show that for a subclass of nonconvex-nonconcave objectives satisfying a so-called two-sided Polyak-{L}ojasiewicz inequality, the alternating gradient descent ascent (AGDA) algorithm converges globally at a linear rate and the stochastic AGDA achieves a sublinear rate. We further develop a variance reduced algorithm that attains a provably faster rate than AGDA when the problem has the finite-sum structure.
We consider the problem of minimizing a block separable convex function (possibly nondifferentiable, and including constraints) plus Laplacian regularization, a problem that arises in applications including model fitting, regularizing stratified mode ls, and multi-period portfolio optimization. We develop a distributed majorization-minimization method for this general problem, and derive a complete, self-contained, general, and simple proof of convergence. Our method is able to scale to very large problems, and we illustrate our approach on two applications, demonstrating its scalability and accuracy.
This paper focuses on stochastic methods for solving smooth non-convex strongly-concave min-max problems, which have received increasing attention due to their potential applications in deep learning (e.g., deep AUC maximization). However, most of th e existing algorithms are slow in practice, and their analysis revolves around the convergence to a nearly stationary point. We consider leveraging the Polyak-L ojasiewicz (PL) condition to design faster stochastic algorithms with stronger convergence guarantee. Although PL condition has been utilized for designing many stochastic minimization algorithms, their applications for non-convex min-max optimization remains rare. In this paper, we propose and analyze proximal epoch-based methods, and establish fast convergence in terms of both {bf the primal objective gap and the duality gap}. Our analysis is interesting in threefold: (i) it is based on a novel Lyapunov function that consists of the primal objective gap and the duality gap of a regularized function; (ii) it only requires a weaker PL condition for establishing the primal objective convergence than that required for the duality gap convergence; (iii) it yields the optimal dependence on the accuracy level $epsilon$, i.e., $O(1/epsilon)$. We also make explicit the dependence on the problem parameters and explore regions of weak convexity parameter that lead to improved dependence on condition numbers. Experiments on deep AUC maximization demonstrate the effectiveness of our methods. Our method (MaxAUC) achieved an AUC of 0.922 on private testing set on {bf CheXpert competition}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا