ﻻ يوجد ملخص باللغة العربية
Our discovery of 1SWASP J093010.78+533859.5 as a probable doubly eclipsing quadruple system containing a contact binary with P~0.23 d and a detached binary with P~1.31 d was announced in 2013. Subsequently Koo et al. confirmed the detached binary spectroscopically and identified a fifth set of static spectral lines at its location, corresponding to a further non-eclipsing component of the system. Here we present new spectroscopic and photometric observations, allowing confirmation of the contact binary and improved modelling of all four eclipsing components. The detached binary is found to contain components of masses 0.837(8) and 0.674(7) M_sol, with radii of 0.832(18) and 0.669(18) R_sol and effective temperatures of 5185(-20,+25) and 4325(-15,+20) K respectively, the contact system has masses 0.86(2) and 0.341(11) M_sol, radii of 0.79(4) and 0.52(5) R_sol respectively, and a common T_eff of 4700(50) K. The fifth star is of similar temperature and spectral type to the primaries in the two binaries. Long-term photometric observations indicate the presence of a spot on one component of the detached binary, moving at an apparent rate of approximately one rotation every two years. Both binaries have consistent system velocities around -11 to -12 km/s, which match the average radial velocity of the fifth star, consistent distance estimates for both subsystems of d=78(3) and d=73(4) pc are also found, and (with some further assumptions) of d=83(9) pc for the fifth star. These findings strongly support the claim that both binaries (and very probably all five stars) are gravitationally bound in a single system. The consistent angles of inclination found for the two binaries (88.2(3) and 86(4) degrees) may also indicate that they originally formed by fragmentation (~9-10 Gyr ago) from a single protostellar disk and subsequently remained in the same orbital plane.
We present a quintuple star system that contains two eclipsing binaries. The unusual architecture includes two stellar images separated by 11 on the sky: EPIC 212651213 and EPIC 212651234. The more easterly image (212651213) actually hosts both eclip
We report the discovery of the relatively bright (V = 10.5 mag), doubly eclipsing 2+2 quadruple system CzeV1731. This is the third known system of its kind, in which the masses are determined for all four stars and both the inner and outer orbits are
Until now, HD 155448 has been known as a post-AGB star and listed as a quadruple system. In this paper, we study the system in depth and reveal that the B component itself is a binary and that the five stars HD 155448 A, B1, B2, C, and D likely form
We report spectroscopic and differential photometric observations of the A-type system V482 Per that reveal it to be a rare hierarchical quadruple system containing two eclipsing binaries. One has the previously known orbital period of 2.4 days and a
We found that the known spectroscopic binary and variable BU~CMi = HD65241 ($V$=6.4-6.7 mag, Sp~=~A0~V) is a quadruple doubly eclipsing 2+2 system. Both eclipsing binaries are detached systems moving in an eccentric orbits: pair A with the period $P_