ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamics of Error Correction

163   0   0.0 ( 0 )
 نشر من قبل Simone Pigolotti
 تاريخ النشر 2015
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and {cred work dissipated by the system during wrong incorporations}. Its derivation is based on the second law of thermodynamics, hence its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.



قيم البحث

اقرأ أيضاً

How cooperation can evolve between players is an unsolved problem of biology. Here we use Hamiltonian dynamics of models of the Ising type to describe populations of cooperating and defecting players to show that the equilibrium fraction of cooperato rs is given by the expectation value of a thermal observable akin to a magnetization. We apply the formalism to the Public Goods game with three players, and show that a phase transition between cooperation and defection occurs that is equivalent to a transition in one-dimensional Ising crystals with long-range interactions. We then investigate the effect of punishment on cooperation and find that punishment plays the role of a magnetic field that leads to an alignment between players, thus encouraging cooperation. We suggest that a thermal Hamiltonian picture of the evolution of cooperation can generate other insights about the dynamics of evolving groups by mining the rich literature of critical dynamics in low-dimensional spin systems.
222 - Xinzhe Zuo , Tom Chou 2021
Backtracking of RNA polymerase (RNAP) is an important pausing mechanism during DNA transcription that is part of the error correction process that enhances transcription fidelity. We model the backtracking mechanism of RNA polymerase, which usually h appens when the polymerase tries to incorporate a mismatched nucleotide triphosphate. Previous models have made simplifying assumptions such as neglecting the trailing polymerase behind the backtracking polymerase or assuming that the trailing polymerase is stationary. We derive exact analytic solutions of a stochastic model that includes locally interacting RNAPs by explicitly showing how a trailing RNAP influences the probability that an error is corrected or incorporated by the leading backtracking RNAP. We also provide two related methods for computing the mean times to error correction or incorporation given an initial local RNAP configuration.
We discuss the problem of proteasomal degradation of proteins. Though proteasomes are important for all aspects of the cellular metabolism, some details of the physical mechanism of the process remain unknown. We introduce a stochastic model of the p roteasomal degradation of proteins, which accounts for the protein translocation and the topology of the positioning of cleavage centers of a proteasome from first principles. For this model we develop the mathematical description based on a master-equation and techniques for reconstruction of the cleavage specificity inherent to proteins and the proteasomal translocation rates, which are a property of the proteasome specie, from mass spectroscopy data on digestion patterns. With these properties determined, one can quantitatively predict digestion patterns for new experimental set-ups. Additionally we design an experimental set-up for a synthetic polypeptide with a periodic sequence of amino acids, which enables especially reliable determination of translocation rates.
Several independent observations have suggested that catastrophe transition in microtubules is not a first-order process, as is usually assumed. Recent {it in vitro} observations by Gardner et al.[ M. K. Gardner et al., Cell {bf147}, 1092 (2011)] sho wed that microtubule catastrophe takes place via multiple steps and the frequency increases with the age of the filament. Here, we investigate, via numerical simulations and mathematical calculations, some of the consequences of age dependence of catastrophe on the dynamics of microtubules as a function of the aging rate, for two different models of aging: exponential growth, but saturating asymptotically and purely linear growth. The boundary demarcating the steady state and non-steady state regimes in the dynamics is derived analytically in both cases. Numerical simulations, supported by analytical calculations in the linear model, show that aging leads to non-exponential length distributions in steady state. More importantly, oscillations ensue in microtubule length and velocity. The regularity of oscillations, as characterized by the negative dip in the autocorrelation function, is reduced by increasing the frequency of rescue events. Our study shows that age dependence of catastrophe could function as an intrinsic mechanism to generate oscillatory dynamics in a microtubule population, distinct from hitherto identified ones.
In cells and in vitro assays the number of motor proteins involved in biological transport processes is far from being unlimited. The cytoskeletal binding sites are in contact with the same finite reservoir of motors (either the cytosol or the flow c hamber) and hence compete for recruiting the available motors, potentially depleting the reservoir and affecting cytoskeletal transport. In this work we provide a theoretical framework to study, analytically and numerically, how motor density profiles and crowding along cytoskeletal filaments depend on the competition of motors for their binding sites. We propose two models in which finite processive motor proteins actively advance along cytoskeletal filaments and are continuously exchanged with the motor pool. We first look at homogeneous reservoirs and then examine the effects of free motor diffusion in the surrounding medium. We consider as a reference situation recent in vitro experimental setups of kinesin-8 motors binding and moving along microtubule filaments in a flow chamber. We investigate how the crowding of linear motor proteins moving on a filament can be regulated by the balance between supply (concentration of motor proteins in the flow chamber) and demand (total number of polymerised tubulin heterodimers). We present analytical results for the density profiles of bound motors, the reservoir depletion, and propose novel phase diagrams that present the formation of jams of motor proteins on the filament as a function of two tuneable experimental parameters: the motor protein concentration and the concentration of tubulins polymerized into cytoskeletal filaments. Extensive numerical simulations corroborate the analytical results for parameters in the experimental range and also address the effects of diffusion of motor proteins in the reservoir.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا