ﻻ يوجد ملخص باللغة العربية
The high velocity dispersion compact cloud CO-0.30-0.07 is a peculiar molecular clump discovered in the central moleculr zone of the Milky Way, which is characterized by its extremely broad velocity emissions ($sim 145 rm{km s^{-1}}$) despite the absence of internal energy sources. We present new interferometric maps of the cloud in multiple molecular lines in frequency ranges of 265--269 GHz and 276--280 GHz obtained using the Sumbmillimeter Array, along with the single-dish images previously obtained with the ASTE 10-m telescope. The data show that the characteristic broad velocity emissions are predominantly confined in two parallel ridges running through the cloud center. The central ridges are tightly anti-correlated with each other in both space and velocity, thereby sharply dividing the entire cloud into two distinct velocity components (+15 km s$^{-1}$ and +55 km s$^{-1}$). This morphology is consistent with a model in which the two velocity components collide with a relative velocity of 40 $mathrm{km s^{-1}}$ at the interface defined by the central ridges, although an alternative explanation with a highly inclined expanding-ring model is yet to be fully invalidated. We have also unexpectedly detected several compact clumps ($lesssim 0.1 $pc in radius) likely formed by shock compression. The clumps have several features in common with typical star-forming clouds: high densities ($10^{6.5-7.5} mathrm{cm^{-3}}$), rich abundances of hot-core-type molecular species, and relatively narrow velocity widths apparently decoupled from the furious turbulence dominating the cloud. The cloud CO-0.30-0.07 is possibly at an early phase of star formation activity triggered by the shock impact.
We report ALMA observations of a one-sided, high-velocity ($sim$80 km s$^{-1}$) CO($J = 2 rightarrow 1$) jet powered by the intermediate-mass protostellar source Serpens SMM1-a. The highly collimated molecular jet is flanked at the base by a wide-ang
We performed Herschel HIFI, PACS and SPIRE observations towards the molecular cloud interacting supernova remnant G349.7+0.2. An extremely broad emission line was detected at 557 GHz from the ground state transition 1_{10}-1_{01} of ortho-water. This
Context. One of the keys to understanding the origin of the Ap stars and their significance in the general context of stellar astrophysics is the consideration of the most extreme properties displayed by some of them. In that context, HD 965 is parti
Filaments in Herschel molecular cloud images are found to exhibit a characteristic width. This finding is in tension with spatial power spectra of the data, which show no indication of this characteristic scale. We demonstrate that this discrepancy i
When the cosmic star formation history peaks (z ~ 2), galaxies vigorously fed by cosmic reservoirs are gas dominated and contain massive star-forming clumps, thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. H