ﻻ يوجد ملخص باللغة العربية
In the theory of open quantum systems interaction is a fundamental concepts in the review of the dynamics of open quantum systems. Correlation, both classical and quantum one, is generated due to interaction between system and environment. Here, we recall the quantity which well known as total entropy production. Appearance of total entropy production is due to the entanglement production between system an environment. In this work, we discuss about the role of the total entropy production for detecting non-Markovianity. By utilizing the relation between total entropy production and total correlation between subsystems, one can see a temporary decrease of total entropy production is a signature of non-Markovianity.
We show that non-Markovian open quantum systems can exhibit exact Markovian dynamics up to an arbitrarily long time; the non-Markovianity of such systems is thus perfectly hidden, i.e. not experimentally detectable by looking at the reduced dynamics
Detuned systems can spontaneously achieve a synchronous dynamics and display robust quantum correlations in different local and global dissipation regimes. Beyond the Markovian limit, information backflow from the environment becomes a crucial mechan
Non-Markovian effects arising in open quantum systems evolution have been a subject of increasing interest over the past decade. One of the most appealing features of non-Markovianity (NM) is that it captures scenarios where loss of information and c
We investigate the effect of counter-rotating-wave terms on the non-Markovianity in quantum open systems by employing the hierarchical equations of motion in the framework of the non-Markovian quantum state diffusion approach. As illustrative example
Non-Markovianity, as an important feature of general open quantum systems, is usually difficult to quantify with limited knowledge of how the plant that we are interested in interacts with its environment-the bath. It often happens that the reduced d