ﻻ يوجد ملخص باللغة العربية
We present the discovery of a transiting exoplanet candidate in the K2 Field-1 with an orbital period of 9.1457 hr: K2-22b. The highly variable transit depths, ranging from $sim$0% to 1.3%, are suggestive of a planet that is disintegrating via the emission of dusty effluents. We characterize the host star as an M-dwarf with $T_{rm eff} simeq 3800$ K. We have obtained ground-based transit measurements with several 1-m class telescopes and with the GTC. These observations (1) improve the transit ephemeris; (2) confirm the variable nature of the transit depths; (3) indicate variations in the transit shapes; and (4) demonstrate clearly that at least on one occasion the transit depths were significantly wavelength dependent. The latter three effects tend to indicate extinction of starlight by dust rather than by any combination of solid bodies. The K2 observations yield a folded light curve with lower time resolution but with substantially better statistical precision compared with the ground-based observations. We detect a significant bump just after the transit egress, and a less significant bump just prior to transit ingress. We interpret these bumps in the context of a planet that is not only likely streaming a dust tail behind it, but also has a more prominent leading dust trail that precedes it. This effect is modeled in terms of dust grains that can escape to beyond the planets Hill sphere and effectively undergo `Roche lobe overflow, even though the planets surface is likely underfilling its Roche lobe by a factor of 2.
We present 45 ground-based photometric observations of the K2-22 system collected between December 2016 and May 2017, which we use to investigate the evolution of the transit of the disintegrating planet K2-22b. Last observed in early 2015, in these
We report on the discovery and characterization of the transiting planet K2-39b (EPIC 206247743b). With an orbital period of 4.6 days, it is the shortest-period planet orbiting a subgiant star known to date. Such planets are rare, with only a handful
We report on the confirmation that the candidate transits observed for the star EPIC 211525389 are due to a short-period Neptune-sized planet. The host star, located in K2 campaign field 5, is a metal-rich ([Fe/H] = 0.26$pm$0.05) G-dwarf (T_eff = 543
We validate a $R_p=2.32pm 0.24R_oplus$ planet on a close-in orbit ($P=2.260455pm 0.000041$ days) around K2-28 (EPIC 206318379), a metal-rich M4-type dwarf in the Campaign 3 field of the K2 mission. Our follow-up observations included multi-band trans
Although the Transiting Exoplanet Survey Satellite (TESS) primary mission observed the northern and southern ecliptic hemispheres, generally avoiding the ecliptic, and the Kepler space telescope during the K2 mission could only observe near the eclip