ﻻ يوجد ملخص باللغة العربية
We study the breaking of rotational symmetry on the lattice for irreducible tensor operators and practical methods for suppressing this breaking. We illustrate the features of the general problem using an $alpha$ cluster model for $^{8}$Be. We focus on the lowest states with non-zero angular momentum and examine the matrix elements of multipole moment operators. We show that the physical reduced matrix element is well reproduced by averaging over all possible orientations of the quantum state, and this is expressed as a sum of matrix elements weighted by the corresponding Clebsch-Gordan coefficients. For our $alpha$ cluster model we find that the effects of rotational symmetry breaking can be largely eliminated for lattice spacings of $aleq 1.7$ fm, and we expect similar improvement for actual lattice Monte Carlo calculations.
We explore the breaking of rotational symmetry on the lattice for bound state energies and practical methods for suppressing this breaking. We demonstrate the general problems associated with lattice discretization errors and finite-volume errors usi
We consider the breaking of Galilean invariance due to different lattice cutoff effects in moving frames and a nonlocal smearing parameter which is used in the construction of the nuclear lattice interaction. The dispersion relation and neutron-proto
We extend earlier studies of transverse Ward-Fradkin-Green-Takahashi identities in QED, their usefulness to constrain the transverse fermion-boson vertex and their importance for multiplicative renormalizability, to the equivalent gauge identities in
We project onto the light-front the pions Poincare-covariant Bethe-Salpeter wave-function, obtained using two different approximations to the kernels of QCDs Dyson-Schwinger equations. At an hadronic scale both computed results are concave and signif
The IKKT matrix model is a promising candidate for a nonperturbative formulation of superstring theory, in which spacetime is conjectured to emerge dynamically from the microscopic matrix degrees of freedom in the large-$N$ limit. Indeed in the Loren