ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond MHD: modeling and observation of partially ionized solar plasma processes

108   0   0.0 ( 0 )
 نشر من قبل Elena Khomenko
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Elena Khomenko




اسأل ChatGPT حول البحث

The temperature and density conditions in the magnetized photosphere and chromosphere of the Sun lead to a very small degree of atomic ionization. In addition, at particular height, the magnetic field may be strong enough to give rise to a cyclotron frequency larger than the collisional frequency for some species, while for others the opposite may happen. These circumstances influence the collective behavior of the particles and some of the hypotheses of magnetohydrodynamics may be relaxed, giving rise to non-ideal MHD effects. In this paper we discuss our recent developments in modeling non-ideal plasma effects derived from the presence of a large amount of neutrals in the solar photosphere and the chromosphere, as well as observational consequences of these effects.



قيم البحث

اقرأ أيضاً

We derive self-consistent formalism for the description of multi-component partially ionized solar plasma, by means of the coupled equations for the charged and neutral components for an arbitrary number of chemical species, and the radiation field. All approximations and assumptions are carefully considered. Generalized Ohms law is derived for the single-fluid and two-fluid formalism. Our approach is analytical with some order-of-magnitude support calculations. After general equations are developed we particularize to some frequently considered cases as for the interaction of matter and radiation.
226 - Roberto Soler , Marc Carbonell , 2013
Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by the ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma $beta$, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions to the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given.
The temperature dependence of rates of electron impact ionization and two electrons recombination are calculated using Wannier cross section of electron impact ionization of neutral hydrogen atom. Entropy production and power dissipation are derived for the case when the ionization degree deviates from its equilibrium value. This is the special case of the obtained general formula for entropy production accompanying chemical reactions. Damping rate of the sound waves is calculated and the conditions when ionization processes dominate are considered. A quasi-classical approximation for the heating mechanism of solar chromosphere is proposed. Several analogous phenomena for damping rates in liquids and crystals are shortly discussed, for example, deaf sound of a glass of beer or English salt solution. An explicit expression for the second or bulk (or volume) viscosity of hydrogen plasma is calculated from firsts principles. For the first time some second viscosity is calculated from first principles.
There is observational evidence of the presence of small-amplitude transverse magnetohydrodynamic (MHD) waves with a wide range of frequencies in the threads of solar prominences. It is believed that the waves are driven at the photosphere and propag ate along the magnetic field lines up to prominences suspended in the corona. The dissipation of MHD wave energy in the partially ionized prominence plasma is a heating mechanism whose relevance needs to be explored. Here we consider a simple 1D model for a non-uniform thin thread and investigate the heating associated with dissipation of Alfven waves. The model assumes an ad hoc density profile and a uniform pressure, while the temperature and ionization degree are self-consistently computed considering either LTE or non-LTE approximations for the hydrogen ionization. A broadband driver for Alfven waves is placed at one end of the magnetic field line, representing photospheric excitation. The Alfvenic perturbations along the thread are obtained by solving the linearized MHD equations for a partially ionized plasma in the single-fluid approximation.We find that wave heating in the partially ionized part of the thread is significant enough to compensate for energy losses due to radiative cooling. A greater amount of heating is found in the LTE case because the ionization degree for core prominence temperatures is lower than that in the non-LTE approximation. This results in a greater level of dissipation due to ambipolar diffusion in the LTE case. Conversely, in the hot coronal part of the model, the plasma is fully ionized and wave heating is negligible. The results of this simple model suggest that MHD wave heating can be relevant for the energy balance in prominences. Further studies based on more elaborate models are required.
The search for life on planets outside our solar system has largely been the province of the astrophysics community until recently. A major development since the NASA Astrobiology Strategy 2015 document (AS15) has been the integration of other NASA s cience disciplines (planetary science, heliophysics, Earth science) with ongoing exoplanet research in astrophysics. The NASA Nexus for Exoplanet System Science (NExSS) provides a forum for scientists to collaborate across disciplines to accelerate progress in the search for life elsewhere. Here we describe recent developments in these other disciplines, with a focus on exoplanet properties and environments, and the prospects for future progress that will be achieved by integrating emerging knowledge from astrophysics with insights from these fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا